FIRST FAILURE PRESSURE OF COMPOSITE PRESSURE VESSELS

by

Aziz ÖNDER
FIRST FAILURE PRESSURE OF COMPOSITE PRESSURE VESSELS

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eylül University
In Partial Fulfillment of the Requirements for the Degree of Master of Science
in Mechanical Engineering, Mechanics Program

by
Aziz ÖNDER

February, 2007
İZMİR
M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “FIRST FAILURE PRESSURE OF COMPOSITE PRESSURE VESSELS” completed by Aziz ÖNDER under supervision of Prof. Dr. Onur SAYMAN and we certify that in our opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Onur SAYMAN
Supervisor

(Jury Member) (Jury Member)

Prof. Dr. Cahit HELVACI
Director
Graduate School of Natural and Applied Sciences
ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor, Prof. Dr. Onur SAYMAN, for his support and guidance throughout this study.

I would also like to thank Tolga Doğan for his help and guidance during the numerical and experimental phase of the study.

I would like to thank Serkan ERKAL and research assistant Semih BENLİ for their help during experimental phase of the study.

I also wish to express my thanks to my friends who helped me.

I am sincerely grateful Doç. Dr. Necmettin TARAKÇIOĞLU and Dr. Ahmet SAMANCI from Selçuk University for their support.

The financial support from the TUBITAK and Accountancy of Research Funds of Dokuz Eylül University are greatly appreciated.

I would also like to thanks Öztorsan Makine San. Tic. Ltd. Şti. and Artıpol Poliüretan Kauçuk İmalat İthalat İhracat San.ve Tic. Ltd. Şti. for their help during manufacturing test apparatus.

Finally, I would like to thank my parents for their loving support throughout my education.

Aziz ÖNDER
FIRST FAILURE PRESSURE OF COMPOSITE PRESSURE VESSELS

ABSTRACT

In this study, optimal angle-ply orientations of symmetric and antisymmetric $[\theta/-\theta]$, shells designed for maximum burst pressure were investigated. Burst pressure of filament wound composite pressure vessels under alternating pure internal pressure has been investigated. The cylindrical section of composite pressure vessels is conducted. A finite element method and experimental approaches are studied to verify optimum winding angles. Glass reinforced plastic (GRP) pipes are made of E-glass epoxy and tested closed-end condition. For this study, a PLC controlled hydraulic pressure testing machine has been established. Study deals with the influences of winding angle on filament-wound composite pressure vessel. An elastic solution procedure based on the Lekhnitskii’s theory was developed in order to predict the first-ply failure of the pressure vessels. The Tsai-Wu failure criterion is applied for the checking the first-ply failure of layers in a simple form. The solution is presented and discussed for various orientation angles. Test specimens have four layers, which have various orientation angles. The layers are oriented symmetrically and antisymmetrically for, $[45°/-45°]$, $[55°/-55°]$, $[60°/-60°]$, $[75°/-75°]$, and $[88°/-88°]$, orientations. The hygrothermal and other mechanical properties are measured on an E-glass-epoxy composite layer. Some analytical and experimental solutions are compared with the finite element solutions, in which commercial software ANSYS 10.0 was utilized, and close results are obtained between them. The optimum winding angle for the composite pressure vessel analysis with the internal pressure loading case is obtained as $[55°]$ for laminates and as $[90°]$ for a lamina.

Keywords: Composite pressure vessels, filament winding, finite element analysis, internal pressure
KOMPOZİT BASINÇLI TÜPLERDE İLK HASAR BASINCI

ÖZ

Bu çalışmada, simetrik ve antisimetrik \([\theta/\theta/\ldots]_s\) şeklindeki tabakalı ince cidarlı kompozitlerin maksimum patlama basıncını için en uygun tabaka-açı oryantasyonları araştırıldı. Kompozit basınçlı tüpün içten basınca maruz olması durumunda davranışını incelenmiştir. Kompozit basınçlı tüplerin silindirik kısmına de-hinilmiştir. Fondu elektronlar metodu ve deneySEL çalıŞmalarla en uygun sarım açısı saptanmaya çalışılır. E-cam/epoksi CTP borular üretilmiş ve kapalı uçlu iç statik basınç testleri uygulanmıştır. Bu çalışma için PLC kontrollü hidrolık basınç test cihazı kuruldu. Çalışmada filaman sarımlı kompozit tüpler üzerindeki sarım açlarının etkileri ele alınmıştır. Kompozit tüpteki oluşan hasarı belirlemek için nümerik çözüm yöntemi Lekhnitskii teorisi kullanılarak geliştirilmiştir. Bu yönteme hasar basıncı aynı ısı etkisi ile değişik açı oryantasyonlarında hesaplanmıştır. Tsai-Wu hasar kriteri tabakalarda oluşan hasanın kontrolünde uygulanmaktadır. Test numuneleri dört tabakalı ve çeşitli oryantasyon açılara sahiptir. Tabakalar simetrik ve antisimetrik durumuna göre, \([45^\circ/-45^\circ]\), \([55^\circ/-55^\circ]\), \([60^\circ/-60^\circ]\), \([75^\circ/-75^\circ]\), and \([88^\circ/-88^\circ]\), açı oryantasyonlarında ele alınmaktadır. Kompozit malzeme olarak E-cam epoksi seçilmiştir ve bu malzemenin termal ve mekanik özellikleri hesaplamalarda kullanılmaktadır. Bazı nümerik sonuçlar sonlu elektron programı ANSYS 10.0 sonuçları ile karşılaştırılmaktakta ve yakın değerler elde edilmektedir. İçten basınca maruz helisel açıda sarımlı kompozit tüplerde en uygun sarım açısının \(55^\circ\) civarında olduğu tespit edilmekte, tek açıda sarımlı kompozit tüpler için ise bu değer \(90^\circ\) olarak bulunmaktadır.

Anahtar sözcükler: Kompozit basınçlı tüpler, filaman sargı, sonlu elemanlar analizi, iç basınç
CONTENTS

Page

THESIS EXAMINATION RESULT FORM ... ii
ACKNOWLEDGEMENTS .. iii
ABSTRACT .. iv
ÖZ .. v

CHAPTER ONE – INTRODUCTION ... 1

1.1 Development of Composite Pressure Vessels ... 1

1.2 Structure of Composite Pressure Vessels .. 3

1.3 Properties of Composite Pressure Vessels .. 4

CHAPTER TWO – LITERATURE REVIEW ... 5

CHAPTER THREE – ENGINEERING MATERIALS ... 8

3.1 Conventional Engineering Materials .. 8

3.1.1 Metals ... 9

3.1.2 Plastics ... 10

3.1.3 Ceramics .. 10

3.1.4 Composites .. 11

3.2 Introduction to Composites ... 11

3.2.1 Functions of Fiber and Matrix ... 14

3.2.2 Special Features of Composites ... 15

3.2.3 Disadvantages of Composites ... 18

3.2.4 Classification of Composite Processing .. 20
3.3 Manufacturing of Composites Materials .. 21
 3.3.1 Hand Lay-up ... 22
 3.3.2 Spray Lay-up .. 23
 3.3.3 Vacuum Bagging .. 24
 3.3.4 Filament Winding ... 25
 3.3.5 Prepregs ... 25
 3.3.6 Resin Transfer Moulding (RTM) .. 26
 3.3.7 Rubber Pressing .. 28
 3.3.8 Pultrusion .. 29
 3.3.9 Sandwich Constructions ... 31

3.4 Composite Product Fabrication .. 32

3.5 Filament Winding .. 33
 3.5.1 Filament Winding Technology ... 34
 3.5.2 Industrial Importance of Filament Winding Process 35
 3.5.3 Filament Winding Process Technology .. 35
 3.5.4 Filament Winding Materials ... 38
 3.5.4.1 Fiber Types (Reinforcement) ... 38
 3.5.4.2 Resin Types (Matrix) .. 41
 3.5.4.3 Additives .. 43
 3.5.5 Winding Patterns .. 44
 3.5.5.1 Hoop Windings ... 44
 3.5.5.2 Helical Windings ... 45
 3.5.5.3 Polar Windings ... 45
 3.5.6 Mechanical Properties of Filament Wound Products 46

CHAPTER FOUR – MECHANICS OF COMPOSITE MATERIALS 48

4.1 General .. 48

4.2 Elastic Constitutive Equation ... 48
4.3 Micromechanical Behaviour of Composites

50

4.4 Macromechanical Behaviour of a Lamina

52

4.4.1 Stress-Strain Relations for Plane Stress in an Orthotropic Material

52

4.4.2 Stress-Strain Relations for a Lamina of Arbitrary Orientation

55

4.5 Macromechanical Behaviour of a Laminate

65

4.5.1 Classical Lamination Theory

65

4.5.2 Lamina Stress-Strain Behaviour

65

4.5.3 Strain and Stress Variation in a Laminate

66

4.5.4 Resultant Laminate Forces and Moments

71

CHAPTER FIVE – NUMERICAL STUDY

75

5.1 Overview of Pressure Vessels

75

5.1.1 Introduction

75

5.2 Design of Pressure Vessels

76

5.2.1 Thin-shell Equations

76

5.2.2 Thick-shell Equations

80

5.3 Stress Analysis of Composite Pressure Vessels

83

5.3.1 Internal Pressure with Hygrothermal Loadings

84

5.4 Failure Analysis

91

5.4.1 Tsai-Wu Failure Theory

93

5.5 Finite Element Approach

95

5.5.1 Three-Dimensional Finite Element Method

95

5.5.2 Modelling of the Pressure Vessels

96
CHAPTER SIX – EXPERIMENTAL STUDY .. 100

6.1 Production of Composite Pressure Vessels .. 100

6.2 Determination of Mechanical Properties ... 102

6.3 Setting Experimental Equipments ... 104

CHAPTER SEVEN – RESULTS AND DISCUSSIONS 107

CHAPTER EIGHT – CONCLUSION AND RECOMMENDATIONS 114

REFERENCES ... 116
CHAPTER ONE

INTRODUCTION

1.1 Development of Composite Pressure Vessels

Pressure vessels have been manufactured by filament winding for a long time. Although they appear to be simple structures, pressure vessels are among the most difficult to design. Filament-wound composite pressure vessels have found widespread use not only for military use but also for civilian applications. This technology originally developed for the military’s internal use was adapted to civilian purpose and later extended to the commercial market. Applications include breathing device, such as self-contained breathing apparatuses used by fire-fighters and other emergency personnel, scuba tanks for divers, oxygen cylinders for medical and aviation cylinders for emergency slide inflation, opening doors or lowering of landing gear, mountaineering expedition equipment, paintball gas cylinders, etc. A potential widespread application for composite pressure vessels is the automotive industry. Emphasis on reducing emissions promotes the conversion to Compressed Natural Gas (CNG) fuelled vehicles worldwide. Engineers are seeking to replace fuel oils with natural gas or hydrogen as the energy supply in automobiles for air quality improvements and reduce global warning. Fuel cells in concert with hydrogen gas storage technologies are key requirements for the successful application of these fuels in vehicles. One of the limitations is lack of vehicle range between refuelling stops. Weight, volume and cost of the containment vessel are also considerations.

Filament-wound composite pressure vessels utilizing high strength and high modulus to density ratio materials offer significant weight savings over conventional all-metal pressure vessels for the containment of high pressure gases and fluids. The structural efficiency of pressure vessels is defined as:

\[e = \frac{PV}{W} \]
\[P_b = \text{Burst pressure} \]

where: \(V = \text{Contained volume} \)
\(W = \text{Vessel weight} \)

The structural efficiencies of all-metal pressure vessels range from \(7.6 \times 10^6 \) to \(15.2 \times 10^6 \) mm, while filament wound composite vessels have efficiencies in the range from \(20.3 \times 10^6 \) to \(30.5 \times 10^6 \) mm. The structure efficiencies of composite pressure vessels of similar volume and pressure.

Composite vessels with very high burst pressures (70-100 Mpa) are in service today in the aerospace industry. Vessels with burst pressure between 200 – 400 Mpa have been under investigation and such containment levels were achieved in the late 1970’s through mid 1980’s. Advanced ultra-high pressure composite vessels design techniques must be employed to achieve such operation.

A maximum pressure of 35 Mpa is permitted under current regulations, 21 Mpa is a standard vehicle refuelling system’s nominal output pressure for civilian applications. Higher pressures are not yet approved for use on public roads or commercial aircraft. This implies a need for advancement in composite pressure vessel technology.

The pressure containment limits of thin wall composite vessels are currently insufficient for their broad application in the transportation industry. Further development of thick-walled designs is required in order to hold ultra-high pressure fuel gases. It is known that stress decline rapidly through the wall thickness. At first glance pretension of wound fibers appears to be able to change the distribution of stress through the wall thickness, but research has shown that the effects are limited. Optimization of stress distributions through a variation of geometry is considered in the design stages of pressure vessels. Stress distributions through the thickness in pressure vessels appear to be not sensitive to geometry modifications. As has been pointed out, the current ultra high pressure vessels are low in structural efficiency.
There also exists a fundamental lack of confidence in the ability to understand and predict their behaviours.

Most of finite element analyses on composite pressure vessels are based on shell elements which are generated using the classical lamination theory. The results should be good when the internal pressures are not very high and ratio of diameter to wall thickness is greater than 15. Some FEA tools like ANSYS provide a thick shell element to reflect the influence of shear stress in the radial direction and capture the transverse shear deformation.

1.2 Structure of Composite Pressure Vessels

Cylindrical composite pressure vessels constitute a metallic internal liner and a filament wound and a composite outer shell as shown in Fig. 1.1. The metal liner is necessary to prevent leaking, while some of the metal liners also provide strength to share internal pressure load. For composite pressure vessels, most of the applied load is carried by the strong outer layers made from filament wound composite material.

Figure 1.1 Example of filament wound composite pressure vessels.

1- Ultra thin-walled aluminium liner
2- Protexal smooth, inert, corrosion resistant internal finish
3- Insulating layer
4- High-performance carbon-fiber overwrap in epoxy resin matrix
5- High-strength fibreglass-reinforced plastic (FRP) protective layer with smooth gel coat
6- Precision–machined thread

1.3 Properties of Composite Pressure Vessels

Composite pressure vessels should take full advantage of the extremely high tensile strength and high elastic modulus of the fibers from which they are made. Theories of laminated composite materials for evaluating these properties are relatively well established for modulus, and to a lesser extent for strength. Generally, there are two approaches to modelling composite material behaviours:

1) Micromechanics where interaction of constituent materials is examined in detail as part of the definition of the behaviour of heterogeneous composite material
2) Macromechanics where the material is assumed homogeneous and the effect of the constituents are detected only as averaged properties.
CHAPTER TWO
LITERATURE REVIEW

From the literature review; it was found that most of design and analysis of composite pressure vessels are based on thin-walled vessels. As pointed out earlier, when the ratio of the outside diameter to inside diameter is larger than 1.1, the vessel should be considered thick-walled. Only a few researchers have considered the effect of wall thickness.

The solution of composite cylinders is based on the Lekhnitskii's theory (1981). He investigated the plane strain case or the generalized plane strain cases. Roy and Tsai (1988) proposed a simple and efficient design method for thick composite cylinders; the stress analysis is based on 3-dimensional elasticity by considering the cylinder in the state of generalized plane strain for both open-end (pipes) and closed-end (pressure vessel).

Parnas and Katirci (2002) discussed the design of fiber-reinforced composite pressure vessels under various loading conditions based on a linear elasticity solution of the thick-walled multilayered filament wound cylindrical shell. A cylindrical
shell having number of sublayers, each of which is cylindrically orthotropic, is treated as in the state of plane strain.

Roy et al. (1992) studied the design of thick multi-layered composite spherical pressure vessels based on a 3-D linear elastic solution. They found that the Tsai-Wu failure criterion is suitable for strength analysis. One of the important discoveries of Roy’s research is that hybrid spheres made from two materials presented an opportunity to increase the burst pressure.

Adali et al. (1995) gave another method on the optimization of multi-layered composite pressure vessels using an exact elasticity solution. A three dimensional theory for anisotropic thick composite cylinders subjected to axis symmetrical loading conditions was derived. The three dimensional interactive Tsai-Wu failure criterion was employed to predict the maximum burst pressure. The optimization of pressure vessels show that the stacking sequence can be employed effectively to maximum burst pressure. However Adali’s results were not compared with experimental testing and the stiffness degradation was not considered during analysis.

The effect of surface cracks on strength has been investigated theoretically and experimentally for glass/epoxy filament wound pipes, by Tarakçıoğlu et al. (2000). They were investigated theoretically and experimentally the effect of surface cracks on strength in glass/epoxy filament wound pipes which were exposed to open ended internal pressure.

Mirza et al. (2001) investigated the composite vessels under concentrated moments applied at discrete lug positions by finite element method. Jacquemin and Vautrin (2002) examined the moisture concentration and the hygrothermal internal stress fields for evaluating the durability of thick composite pipes submitted to cyclic environmental condition. Sun et al. (1999) calculated the stresses and bursting pressure of filament wound solid-rocket motor cases which are a kind of composite pressure vessel; maximum stress failure criteria and stiffness-degradation model
were introduced to the failure analysis. Hwang et al. (2003) manufactured composite pressure vessels made by continuous winding of fibrous tapes reinforced in longitudinal and transverse directions and proposed for commercial applications instead of traditional isotensoid vessels. Sonnen et al. (2004) studied computerized calculation of composite laminates and structures.

Literature reveals that:

- Most of the finite element analyses of composite pressure vessels are based on elastic constitutive relations and traditional thin-walled laminated shell theory
- Optimization of composite pressure vessels is done by changing the parameters of the composite materials including filament winding angle, lamination sequence, and material
- A Tsai-Wu failure criterion is regarded as one of the best theories at predicting failure in composite material

The present research focuses on:

- Determination of first failure pressures of composite pressure vessels by using a finite element method
- Optimization of composite pressure vessels
- Comparison of filament winding angles of composite pressure vessels
- Comparison of theoretical results with experimental
3.1 Conventional Engineering Materials

There are more than 50,000 materials available to engineers for the design and manufacturing of products for various applications. These materials range from ordinary materials (e.g., copper, cast iron, brass), which have been available for several hundred years, to the more recently developed, advanced materials (e.g., composites, ceramics, and high-performance steels). Due to the wide choice of materials, today’s engineers are posed with a big challenge for the right selection of a material and the right selection of a manufacturing process for an application. It is difficult to study all of these materials individually; therefore, a broad classification is necessary for simplification and characterization.

These materials, depending on their major characteristics (e.g., stiffness, strength, density, and melting temperature), can be broadly divided into four main categories: (1) metals, (2) plastics, (3) ceramics, and (4) composites. Each class contains large number of materials with a range of properties which to some extent results in an overlap of properties with other classes. For example, most common ceramic materials such as silicon carbide (SiC) and alumina (Al₂O₃) have densities in the range 3.2 to 3.5 g/cc and overlap with the densities of common metals such as iron (7.8 g/cc), copper (6.8 g/cc), and aluminum (2.7 g/cc). Table 3.1 depicts the properties of some selected materials in each class in terms of density (specific weight), stiffness, strength, and maximum continuous use temperature. The maximum operating temperature in metals does not degrade the material the way it degrades the plastics and composites. Metals generally tend to temper and age at high temperatures, thus altering the microstructure of the metals. Due to such microstructural changes, modulus and strength values generally drop. The maximum temperature cited in Table 3.1 is the temperature at which the material retains its strength and stiffness values to at least 90% of the original values shown in the table.
Table 3.1 Typical properties of some engineering materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Density ((\rho)) (g/cc)</th>
<th>Tensile Modulus (E) (GPa)</th>
<th>Tensile Strength ((\sigma)) (GPa)</th>
<th>Specific Modulus (E/(\rho))</th>
<th>Specific Strength (G/(\rho))</th>
<th>Max. Service Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast iron, grade 20</td>
<td>7.8</td>
<td>100</td>
<td>0.14</td>
<td>14.3</td>
<td>0.02</td>
<td>230-300</td>
</tr>
<tr>
<td>Steel, AISI 1045 hot rolled</td>
<td>7.8</td>
<td>205</td>
<td>0.57</td>
<td>26.3</td>
<td>0.073</td>
<td>500-650</td>
</tr>
<tr>
<td>Aluminum 2024-T4</td>
<td>2.7</td>
<td>73</td>
<td>0.45</td>
<td>27</td>
<td>0.17</td>
<td>150-250</td>
</tr>
<tr>
<td>Aluminum 6061-T6</td>
<td>2.7</td>
<td>69</td>
<td>0.27</td>
<td>25.5</td>
<td>0.10</td>
<td>150-250</td>
</tr>
<tr>
<td>Plastics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon 6/6</td>
<td>1.15</td>
<td>2.9</td>
<td>0.082</td>
<td>2.52</td>
<td>0.071</td>
<td>75-100</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>0.9</td>
<td>1.4</td>
<td>0.083</td>
<td>1.55</td>
<td>0.037</td>
<td>50-80</td>
</tr>
<tr>
<td>Epoxy</td>
<td>1.25</td>
<td>3.5</td>
<td>0.069</td>
<td>2.8</td>
<td>0.055</td>
<td>80-215</td>
</tr>
<tr>
<td>Phenolic</td>
<td>1.35</td>
<td>3.0</td>
<td>0.006</td>
<td>2.22</td>
<td>0.004</td>
<td>70-120</td>
</tr>
<tr>
<td>Ceramics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alumina</td>
<td>3.8</td>
<td>350</td>
<td>0.17</td>
<td>92.1</td>
<td>0.045</td>
<td>1425-1540</td>
</tr>
<tr>
<td>MgO</td>
<td>3.6</td>
<td>205</td>
<td>0.06</td>
<td>56.9</td>
<td>0.017</td>
<td>900-1000</td>
</tr>
<tr>
<td>Short fiber composites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass-filled epoxy (35%)</td>
<td>1.9</td>
<td>25</td>
<td>0.30</td>
<td>8.26</td>
<td>0.16</td>
<td>80-200</td>
</tr>
<tr>
<td>Glass-filled polyester (35%)</td>
<td>2.00</td>
<td>15.7</td>
<td>0.13</td>
<td>7.25</td>
<td>0.065</td>
<td>80-125</td>
</tr>
<tr>
<td>Glass-filled nylon (35%)</td>
<td>1.62</td>
<td>14.5</td>
<td>0.20</td>
<td>8.95</td>
<td>0.12</td>
<td>75-110</td>
</tr>
<tr>
<td>Glass-filled nylon (60%)</td>
<td>1.95</td>
<td>21.8</td>
<td>0.29</td>
<td>11.18</td>
<td>0.149</td>
<td>80-215</td>
</tr>
<tr>
<td>Unidirectional composites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-glass/epoxy (45%)</td>
<td>1.81</td>
<td>39.5</td>
<td>0.87</td>
<td>21.8</td>
<td>0.48</td>
<td>80-215</td>
</tr>
<tr>
<td>Carbon/epoxy (61%)</td>
<td>1.59</td>
<td>142</td>
<td>1.73</td>
<td>89.3</td>
<td>1.08</td>
<td>80-215</td>
</tr>
<tr>
<td>Kevlar/epoxy (53%)</td>
<td>1.35</td>
<td>63.6</td>
<td>1.1</td>
<td>47.1</td>
<td>0.81</td>
<td>80-215</td>
</tr>
</tbody>
</table>

3.1.1 Metals

Metals have been the dominating materials in the past for structural applications. They provide the largest design and processing history to the engineers. The common metals are iron, aluminum, copper, magnesium, zinc, lead, nickel, and titanium. In structural applications, alloys are more frequently used than pure metals. Alloys are formed by mixing different materials, sometimes including non-metallic elements. Alloys offer better properties than pure metals. For example, cast iron is brittle and easy to corrode, but the addition of less than 1% carbon in iron makes it tougher, and the addition of chromium makes it corrosion resistant. Through the principle of alloying, thousands of new metals are created.
Metals are, in general, heavy as compared to plastics and composites. Only aluminum, magnesium, and beryllium provide densities close to plastics. Steel is 4 to 7 times heavier than plastic materials; aluminum is 1.2 to 2 times heavier than plastics. Metals generally require several machining operations to obtain the final product.

Metals have high stiffness, strength, thermal stability, and thermal and electrical conductivity. Due to their higher temperature resistance than plastics, they can be used for applications with higher service temperature requirements.

3.1.2 Plastics

Plastics have become the most common engineering materials over the past decade. In the past 5 years, the production of plastics on a volume basis has exceeded steel production. Due to their light weight, easy processability, and corrosion resistance, plastics are widely used for automobile parts, aerospace components, and consumer goods. Plastics can be purchased in the form of sheets, rods, bars, powders, pellets, and granules. With the help of a manufacturing process, plastics can be formed into near-net-shape or net-shape parts. They can provide high surface finish and therefore eliminate several machining operations. This feature provides the production of low-cost parts.

Plastics are not used for high-temperature applications because of their poor thermal stability. In general, the operating temperature for plastics is less than 100°C. Some plastics can take service temperature in the range of 100 to 200°C without a significant decrease in the performance. Plastics have lower melting temperatures than metals and therefore they are easy to process.

3.1.3 Ceramics

Ceramics have strong covalent bonds and therefore provide great thermal stability and high hardness. They are the most rigid of all materials. The major distinguishing
characteristic of ceramics as compared to metals is that they possess almost no ductility. They fail in brittle fashion. Ceramics have the highest melting points of engineering materials. They are generally used for high-temperature and high-wear applications and are resistant to most forms of chemical attack. Ceramics cannot be processed by common metallurgical techniques and require high-temperature equipment for fabrication. Due to their high hardness, ceramics are difficult to machine and therefore require net-shape forming to final shape. Ceramics require expensive cutting tools, such as carbide and diamond tools.

3.1.4 Composites

Composite materials have been utilized to solve technological problems for a long time but only in the 1960s did these materials start capturing the attention of industries with the introduction of polymeric-based composites. Since then, composite materials have become common engineering materials and are designed and manufactured for various applications including automotive components, sporting goods, aerospace parts, consumer goods, and in the marine and oil industries. The growth in composite usage also came about because of increased awareness regarding product performance and increased competition in the global market for lightweight components. Among all materials, composite materials have the potential to replace widely used steel and aluminum, and many times with better performance. Replacing steel components with composite components can save 60 to 80 % in component weight, and 20 to 50 % weight by replacing aluminum parts. Today, it appears that composites are the materials of choice for many engineering applications.

3.2 Introduction to Composites

A composite material is made by combining two or more materials to give a unique combination of properties. The above definition is more general and can include metals alloys, plastic co-polymers, minerals, and wood. Fiber-reinforced composite materials differ from the above materials in that the constituent materials
are different at the molecular level and are mechanically separable. In bulk form, the constituent materials work together but remain in their original forms. The final properties of composite materials are better than constituent material properties.

The concept of composites was not invented by human beings; it is found in nature. An example is wood, which is a composite of cellulose fibers in a matrix of natural glue called lignin. The shell of invertebrates, such as snails and oysters, is an example of a composite. Such shells are stronger and tougher than man-made advanced composites. Scientists have found that the fibers taken from a spider’s web are stronger than synthetic fibers. In India, Greece, and other countries, husks or straws mixed with clay have been used to build houses for several hundred years. Mixing husk or sawdust in a clay is an example of a particulate composite and mixing straws in clay is an example of a short fiber composite. These reinforcements are done to improve performance.

The main concept of a composite is that it contains matrix materials. Typically, composite material is formed by reinforcing fibers in a matrix resin as shown in Figure 3.1. The reinforcements can be fibers, particulates, or whiskers, and the matrix materials can be metals, plastics, or ceramics.

![Figure 3.1 Formation of a composite material using fibers and resin.](image)

The reinforcements can be made from polymers, ceramics, and metals. The fibers can be continuous, long, or short. Composites made with a polymer matrix have
become more common and are widely used in various industries. This section focuses on composite materials in which the matrix materials are polymer-based resins. They can be thermoset or thermoplastic resins. The reinforcing fiber or fabric provides strength and stiffness to the composite, whereas the matrix gives rigidity and environmental resistance. Reinforcing fibers are found in different forms, from long continuous fibers to woven fabric to short chopped fibers and matrix. Each configuration results in different properties. The properties strongly depend on the way the fibers are laid in the composites. All of the above combinations or only one form can be used in a composite. The important thing to remember about composites is that the fiber carries the load and its strength is greatest along the axis of the fiber. Long continuous fibers in the direction of the load result in a composite with properties far exceeding the matrix resin itself. The same material chopped into short lengths yields lower properties than continuous fibers, as illustrated in Figure 3.2. Depending on the type of application (structural or non-structural) and manufacturing method, the fiber form is selected. For structural applications, continuous fibers or long fibers are recommended; whereas for non-structural applications, short fibers are recommended. Injection and compression molding utilize short fibers, whereas filament winding, pultrusion, and roll wrapping use continuous fibers.

![Continuous fiber composites and Short fiber composites](Figure 3.2 Continuous fiber and short fiber composites.)
3.2.1 Functions of Fibers and Matrix

A composite material is formed by reinforcing plastics with fibers. To develop a good understanding of composite behaviour, one should have a good knowledge of the roles of fibers and matrix materials in a composite. The important functions of fibers and matrix materials are discussed below.

The main functions of the fibers in a composite are:

- To carry the load. In a structural composite, 70 to 90% of the load is carried by fibers
- To provide stiffness, strength, thermal stability, and other structural properties in the composites
- To provide electrical conductivity or insulation, depending on the type of fiber used

A matrix material fulfills several functions in a composite structure, most of which are vital to the satisfactory performance of the structure. Fibers in and of themselves are of little use without the presence of a matrix material or binder. The important functions of a matrix material include the following:

- The matrix material binds the fibers together and transfers the load to the fibers. It provides rigidity and shape to the structure
- The matrix isolates the fibers so that individual fibers can act separately. This stops or slows the propagation of a crack
- The matrix provides a good surface finish quality and aids in the production of net-shape or near-net-shape parts
- The matrix provides protection to reinforcing fibers against chemical attack and mechanical damage (wear)
- Depending on the matrix material selected, performance characteristics such as ductility, impact strength, etc. are also influenced. A ductile matrix will
increase the toughness of the structure. For higher toughness requirements, thermoplastic-based composites are selected

- The failure mode is strongly affected by the type of matrix material used in the composite as well as its compatibility with the fiber

3.2.2 Special Features of Composites

Composites have been routinely designed and manufactured for applications in which high performance and light weight are needed. They offer several advantages over traditional engineering materials as discussed below.

- Composite materials provide capabilities for part integration. Several metallic components can be replaced by a single composite component.

- Composite structures provide in-service monitoring or online process monitoring with the help of embedded sensors. This feature is used to monitor fatigue damage in aircraft structures or can be utilized to monitor the resin flow in an RTM (resin transfer molding) process. Materials with embedded sensors are known as “smart” materials.

- Composite materials have a high specific stiffness (stiffness-to-density ratio), as shown in Table 3.1. Composites offer the stiffness of steel at one fifth the weight and equal the stiffness of aluminum at one half the weights.

- The specific strength (strength-to-density ratio) of a composite material is very high. Due to this, airplanes and automobiles move faster and with better fuel efficiency. The specific strength is typically in the range of 3 to 5 times that of steel and aluminum alloys. Due to this higher specific stiffness and strength, composite parts are lighter than their counterparts.

- The fatigue strength (endurance limit) is much higher for composite materials. Steel and aluminum alloys exhibit good fatigue strength up to about 50% of their static strength. Unidirectional carbon/epoxy composites have good fatigue strength up to almost 90% of their static strength.
• Composite materials offer high corrosion resistance. Iron and aluminum corrode in the presence of water and air and require special coatings and alloying. Because the outer surface of composites is formed by plastics, corrosion and chemical resistance are very good.

• Composite materials offer increased amounts of design flexibility. For example, the coefficient of thermal expansion (CTE) of composite structures can be made zero by selecting suitable materials and lay-up sequence. Because the CTE for composites is much lower than for metals, composite structures provide good dimensional stability.

• Net-shape or near-net-shape parts can be produced with composite materials. This feature eliminates several machining operations and thus reduces process cycle time and cost.

• Complex parts, appearance, and special contours, which are sometimes not possible with metals, can be fabricated using composite materials without welding or riveting the separate pieces. This increases reliability and reduces production times. It offers greater manufacturing feasibility.

• Composite materials offer greater feasibility for employing design for manufacturing (DFM) and design for assembly (DFA) techniques. These techniques help minimize the number of parts in a product and thus reduce assembly and joining time. By eliminating joints, high-strength structural parts can be manufactured at lower cost. Cost benefit comes by reducing the assembly time and cost.

• Composites offer good impact properties, as shown in Figures 3.3 and Figure 3.4 shows impact properties of aluminum, steel, glass/epoxy, kevlar/epoxy, and carbon/epoxy continuous fiber composites. Glass and Kevlar composites provide higher impact strength than steel and aluminum. Figure 3.4 compares impact properties of short and long glass fiber thermoplastic composites with aluminum and magnesium. Among thermoplastic composites, impact properties of long glass fiber nylon 66 composite (NylonLG60) with 60% fiber content, short glass fiber nylon 66 composite (NylonSG40) with 40% fiber content, long glass fiber polypropylene composite (PPLG40) with 40% fiber content, short glass fiber polypropylene composite (PPSG40) with 40%
fiber content, long glass fiber PPS composite (PPSLG50) with 50% fiber content, and long glass fiber polyurethane composite (PULG60) with 60% fiber content are described. Long glass fiber provides three to four times improved impact properties than short glass fiber composites.

Figure 3.3 Impact properties of various engineering materials. Unidirectional composite materials with about 60% fiber volume fraction are used.

Figure 3.4 Impact properties of long glass (LG) and short glass (SG) fibers reinforced thermoplastic composites. Fiber weight percent is written at the end in two digits.
• Noise, vibration, and harshness (NVH) characteristics are better for composite materials than metals. Composite materials dampen vibrations an order of magnitude better than metals. These characteristics are used in a variety of applications, from the leading edge of an airplane to golf clubs.

• By utilizing proper design and manufacturing techniques, cost-effective composite parts can be manufactured. Composites offer design freedom by tailoring material properties to meet performance specifications, thus avoiding the over-design of products. This is achieved by changing the fiber orientation, fiber type, and/or resin systems.

• Glass-reinforced and aramid-reinforced phenolic composites meet FAA and JAR requirements for low smoke and toxicity. This feature is required for aircraft interior panels, stowbins, and galley walls.

• The cost of tooling required for composites processing is much lower than that for metals processing because of lower pressure and temperature requirements. This offers greater flexibility for design changes in this competitive market where product lifetime is continuously reducing.

3.2.3 Disadvantages of Composites

Although composite materials offer many benefits, they suffer from the following disadvantages:

• The materials cost for composite materials is very high compared to that of steel and aluminum. It is almost 5 to 20 times more than aluminum and steel on a weight basis. For example, glass fiber costs $1.00 to $8.00/lb; carbon fiber costs $8 to $40/lb; epoxy costs $1.50/lb; glass/epoxy prepreg costs $12/lb; and carbon/epoxy prepreg costs $12 to $60/lb. The cost of steel is $0.20 to $1.00/lb and that of aluminum is $0.60 to $1.00/lb.

• In the past, composite materials have been used for the fabrication of large structures at low volume (one to three parts per day). The lack of high-volume production methods limits the widespread use of composite materials. Recently, pultrusion, resin transfer molding (RTM), structural reaction
injection molding (SRIM), compression molding of sheet molding compound (SMC), and filament winding have been automated for higher production rates. Automotive parts require the production of 100 to 20,000 parts per day. For example, Corvette volume is 100 vehicles per day, and Ford-Taurus volume is 2000 vehicles per day. Steering system companies such as Delphi Saginaw Steering Systems and TRW produce more than 20,000 steering systems per day for various models. Sporting good items such as golf shafts are produced on the order of 10,000 pieces per day.

- Classical ways of designing products with metals depend on the use of machinery and metals handbooks, and design and data handbooks. Large design databases are available for metals. Designing parts with composites lacks such books because of the lack of a database.

- The temperature resistance of composite parts depends on the temperature resistance of the matrix materials. Because a large proportion of composites use polymer-based matrices, temperature resistance is limited by the plastics’ properties. Average composites work in the temperature range –40 to +100°C. The upper temperature limit can range between +150 and +200°C for high-temperature plastics such as epoxies, bismaleimides, and PEEK. Table 3.2 shows the maximum continuous-use temperature for various polymers.

- Solvent resistance, chemical resistance, and environmental stress cracking of composites depend on the properties of polymers. Some polymers have low resistance to solvents and environmental stress cracking.

- Composites absorb moisture, which affects the properties and dimensional stability of the composites.
Table 3.2 Maximum Continuous-Use Temperatures for Various Thermosets and Thermoplastics

<table>
<thead>
<tr>
<th>Materials</th>
<th>Maximum Continuous-Use Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermosets</td>
<td></td>
</tr>
<tr>
<td>Vinylester</td>
<td>60-150</td>
</tr>
<tr>
<td>Polyester</td>
<td>60-150</td>
</tr>
<tr>
<td>Phenolics</td>
<td>70-150</td>
</tr>
<tr>
<td>Epoxy</td>
<td>80-215</td>
</tr>
<tr>
<td>Cyanate esters</td>
<td>150-250</td>
</tr>
<tr>
<td>Bismaleimide</td>
<td>230-320</td>
</tr>
<tr>
<td>Thermoplastics</td>
<td></td>
</tr>
<tr>
<td>Polyethylene</td>
<td>50-80</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>50-75</td>
</tr>
<tr>
<td>Acetal</td>
<td>70-95</td>
</tr>
<tr>
<td>Nylon</td>
<td>75-100</td>
</tr>
<tr>
<td>Polyester</td>
<td>70-120</td>
</tr>
<tr>
<td>PPS</td>
<td>120-220</td>
</tr>
<tr>
<td>PEEK</td>
<td>120-250</td>
</tr>
<tr>
<td>Teflon</td>
<td>200-260</td>
</tr>
</tbody>
</table>

3.2.4 Classification of Composites Processing

Processing is the science of transforming materials from one shape to the other. Because composite materials involve two or more different materials, the processing techniques used with composites are quite different than those for metals processing. There are various types of composites processing techniques available to process the various types of reinforcements and resin systems. It is the job of a manufacturing engineer to select the correct processing technique and processing conditions to meet the performance, production rate, and cost requirements of an application. The engineer must make informed judgments regarding the selection of a process that can accomplish the most for the least resources. For this, engineers should have a good knowledge of the benefits and limitations of each process. This section discusses the various manufacturing processes frequently used in the fabrication of thermoset and thermoplastic composites, as well as the processing conditions, fabrication steps, limitations, and advantages of each manufacturing method. Figure 3.5 classifies the frequently used composites processing techniques in the composites industry.
3.3 Manufacturing Processes of Composite Materials

If you want to design a product using composites, there are many choices to make in the area of resins, fibers and core materials etc, each of them having their own unique set of properties. However, the end properties of a product built from these different materials are not only a function of the individual material properties. The way the materials are designed into the product and the way the materials are processed to make the product, contribute largely to the overall end properties.

The choice for a specific manufacturing process is based on the form and complexity of the product, the tooling and processing costs and, most importantly, the required properties for the product. We will describe the most commonly used manufacturing processes.
3.3.1 Hand Lay-up

Hand lay-up, also known as wet lay-up, uses fibers in the form of woven, knitted, stitched or bonded fabrics. These fibers, after being placed in a mould, are impregnated by hand using rollers or brushes. The laminates are left to cure under standard atmospheric conditions.

Figure 3.6 Hand lay-up process technique.

Materials

• Any kind of fiber and any kind of resin can be processed by hand lay-up.

Advantages

• Low molding/tooling costs

• Widely used

• Possibility for large products

• Possibility for small series

• Wide choice of suppliers and material types
Disadvantages

- Overall quality of the composite depends on the skill of the processors
- Health and safety precautions during processing necessary
- Resins need to be low in viscosity to be workable by hand. This generally compromises their mechanical and thermal properties.

3.3.2 Spray Lay-up

Spray lay-up uses a hand-held spray gun which chops the fibers and than feeds it into a spray of resin aimed at the mould. The materials are left to cure under standard atmospheric conditions.

Materials

- Spray lay-up can only make use of glass fibers. Polyester is primarily used as matrix.

Advantages

- Low molding/tooling costs
- Widely used
• Possibility for large products

• Possibility for small series

Disadvantages

• Laminates tend to be very resin-rich and therefore excessively heavy

• Mechanical properties are limited by the use of short fibers

• Health and safety precautions during processing necessary

• Resins need to be low in viscosity to be sprayable. This generally compromises their mechanical and thermal properties

3.3.3 Vacuum Bagging

Vacuum bagging is basically an extension of wet lay-up. In order to improve the consolidation of the laminate laid-up by hand or spray, pressure up to 1 atmosphere is applied. A plastic film is sealed over the laminate and onto the mould. After that the air underneath the plastic film is extracted by a vacuum pump.

![Vacuum Bagging Diagram](image)

Figure 3.8 Vacuum bagging process technique.

Materials

• Primarily epoxy is used in combination with any kind of fibers and fabrics. Even heavy fabrics can be wet-out due to the consolidation pressure.
Advantages

• Higher fiber content can be achieved compared to standard wet lay-up.

• Better fiber wet-out due to pressure.

• The vacuum bag reduces the amount of volatiles emitted during cure.

Disadvantages

• Extra costs compared to wet lay-up (tooling, labour and bagging material).

• Quality determined by the skills of the operator (mixing en controlling of resin).

3.3.4 Filament Winding

The process of filament winding is discussed in section 3.5.

3.3.5 Prepregs

‘Prepreg’ stands for pre-impregnated, which basically means ‘already impregnated’. Fabrics and fibers are pre-impregnated by the materials manufacturer, under heat and pressure or with solvent, with a pre-catalysed resin. Although the catalyst is reasonably stable at ambient temperatures, allowing these materials to be used / processed for several weeks or even months, they are mostly stored frozen to prolong storage life.

Figure 3.9 Prepregs process technique.
Unidirectional materials take fiber direct from a creel, and are held together by the resin alone. The prepregs are laid up by hand or machine onto a mould surface, vacuum bagged and then heated to typically 120-180°C. This allows the resin to initially reflow and eventually to cure. Additional pressure for the molding is usually provided by an autoclave (effectively a pressurized oven) which can apply up to 5 atmospheres to the laminate.

Materials

- Generally epoxy, polyester, phenolic and high temperature resins such as polyimides, cyanate esters and bismaleimides, combined with any kind of fiber (directly from creel or as a fabric).

Advantages

- Resin/catalyst level set by manufacturer.
- Materials are clean to work with.
- Extended working times at room temperature.
- Automation and labour saving possible.
- Resin chemistry can be optimised for mechanical and thermal performance, with the high viscosity resins being impregnable due to the manufacturing process.

Disadvantages

- Material cost is higher.
- Autoclave required: expensive, slow and limited in size.

3.3.6 Resin Transfer Moulding (RTM)

RTM is a relatively high performance production method. Although the fiber-to-resin ratio of about 60% is not as high as using prepregs, RTM offers possibilities
that are very difficult to meet with other manufacturing processes.

RTM makes production of complex structures, for example with ribs or with network structures, relatively easy. The male and the female mould have the advantage that the surfaces are all of high quality and within certain tolerances. The size of the composite parts just depends on the size of the mould tool.

A less obvious but nevertheless important advantage of RTM is that the workers are much less affected by the chemicals compared to other production methods (hand lay-up). This is also true with respect to health problems; especially allergic reactions caused by chemicals for example solvents.

![Figure 3.10 Resin transfer moulding technique.](image)

Materials

- Generally polyester, vinylester and epoxy are used in combination with any kind of fiber.

Advantages

- Large, complex products possible.
• Closed mould; no vapour emissions.

• Excellent surface quality on both sides.

Disadvantages

• Moulds can be expensive.

• Unimpregnated areas can occur resulting in very expensive scrap parts.

3.3.7 Rubber Pressing

Rubber pressing is a process for forming sheet materials (both composites and sheet metals) into products. It uses one product shaped mould, made out of aluminium or wood, and one universal rubber ‘cushion’. For rubber pressing composites, a thermoplastic resin is required. Thermoplastic prepreg sheets are heated by infrared heaters. The next step is pressing the sheet material into its final form.

Rubber pressing is used for economically forming sheet materials into (complex double curved) products. Because only one mould is required, the costs and the time necessary for making the mould are both low. This makes this process especially interesting for small series, prototyping and to establish short time-to-market.

Materials

• Rubber pressing composites requires thermoplastic prepregs. Any type of fiber can be used, as long as they can withstand the temperature necessary for heating the prepregs.

Advantages

• Low tooling costs.

• Fast mould production.
• Good surface quality.

• Flexibility.

3.3.8 Pultrusion

Fibers are pulled from a creel through a resin bath and then on through a heated die. The die completes the impregnation of the fiber, controls the resin content and cures the material into its final shape as it passes through the die. This cured profile is then automatically cut to length. Fabrics may also be introduced into the die to provide fiber direction other than at 0°. Although pultrusion is a continuous process,
producing a profile of constant cross-section, a variant known as 'pulforming' allows for some variation to be introduced into the cross-section. The process pulls the materials through the die for impregnation, and then clamps them in a mould for curing. This makes the process non-continuous, but accommodating of small changes in cross-section.

Materials

- Pultrusion can process any kind of continuous fiber. Generally used resins are polyester, vinylester and epoxy.

![Figure 3.12 Pultrusion technique.](image)

Advantages

- Fast and economic way of impregnating and curing materials.
- Resin content can be accurately controlled.
- Minimized fiber costs (come directly from creel).
- Very good structural properties (fibers lay straight in loading direction).
• Impregnation area can be enclosed thus limiting volatile emissions.

Disadvantages

• Tooling costs are high.

• Limited to constant or near constant cross-section products.

3.3.9 Sandwich Constructions

Structural sandwiches are a special form of laminated composite in which thin, strong, stiff, hard, but relatively heavy facings are combined with thick, relatively soft, light and weaker cores to provide a lightweight composite stronger and stiffer in most respects than the sum of the individual stiffness and strengths.

![Figure 3.13 Sandwich construction technique.](image)

The basic principle of a sandwich (spaced facings) was discovered in 1820 by a French inventor named Duleau.

A sandwich construction includes the following elements:

1. Two laminates, outer and inner

2. Core material, as a spacer
3. Adhesive for bonding of laminates

Common materials for the laminates are: composite, metal or wood. The core can be made of paper, honeycombs made of impregnated aramid-paper or thermoplasts and all kind of foams.

3.4 Composites Product Fabrication

Composite products are fabricated by transforming the raw material into final shape using one of the manufacturing processes discussed in Section 3.2.4.

The products thus fabricated are machined and then joined with other members as required for the application. The complete product fabrication is divided into the following four steps:

• **Forming**
 In this step, feedstock is changed into the desired shape and size, usually under the action of pressure and heat.

• **Machining**
 Machining operations are used to remove extra or undesired material.

• **Drilling**
 Turning, cutting, and grinding come in this category. Composites machining operations require different tools and operating conditions than that required by metals.

• **Joining and Assembly**
 Joining and assembly is performed to attach different components in a manner so that it can perform a desired task. Adhesive bonding, fusion bonding, mechanical fastening, etc. are commonly used for assembling two components. These operations are time consuming and cost money. Joining and assembly should be avoided as much as possible to reduce product costs.
• **Finishing**

Finishing operations are performed for several reasons, such as to improve outside appearance, to protect the product against environmental degradation, to provide a wear-resistant coating, and/or to provide a metal coating that resembles that of a metal. Golf shaft companies apply coating and paints on outer composite shafts to improve appearance and look.

It is not necessary that all of the above operations be performed at one manufacturing company. Sometimes a product made in one company is sent to another company for further operations. For example, an automotive driveshaft made in a filament winding company is sent to automakers (tier 1 or tier 2) for assembly with their final product, which is then sold to OEMs (original equipment manufacturers). In some cases, products such as golf clubs, tennis rackets, fishing rods, etc. are manufactured in one company and then sent directly to the distributor for consumer use.

3.5 Filament Winding

In a filament winding process, a band of continuous resin impregnated rovings or monofilaments is wrapped around a rotating mandrel and then cured either at room temperature or in an oven to produce the final product. The technique offers high speed and precise method for placing many composite layers. The mandrel can be cylindrical, round or any shape that does not have re-entrant curvature. Among the applications of filament winding are cylindrical and spherical pressure vessels, pipe lines, oxygen & other gas cylinders, rocket motor casings, helicopter blades, large underground storage tanks (for gasoline, oil, salts, acids, alkalies, water etc.). The process is not limited to axis-symmetric structures: prismatic shapes and more complex parts such as tee-joints, elbows may be wound on machines equipped with the appropriate number of degrees of freedom. Modern winding machines are numerically controlled with higher degrees of freedom for laying exact number of layers of reinforcement. Mechanical strength of the filament wound parts not only
depends on composition of component material but also on process parameters like winding angle, fibre tension, resin chemistry and curing cycle.

3.5.1 Filament Winding Technology

In 1964, the authors, Rosato D.V and Grove C.S. in their book titled, Filament winding: Its Development, Manufacture, Applications and Design defined it as a technique which "...produces high-strength and lightweight products; consists basically of two ingredients; namely, a filament or tape type reinforcement and a matrix or resin". The unique characteristics of these materials made great revolutions for many years. The concept of filament winding process had been introduced in early 40's and the first attempt was made to develop filament-winding equipment. The equipment that was designed in 1950's was very basic; performing the simplest tasks using only two axes of motion (spindle rotation and horizontal carriage). Machine design consisted of a beam, a few legs and cam rollers for support. The simplistic design was sufficient to create the first filament wound parts: rocket motor cases. Initial advancements came in the form of mechanical systems that allowed an operator to program a machine by the use of gears, belts, pulleys and chains. These machines had limited capabilities and capacities, but were accurate.

Eventually through technical innovations, engineers were able to design servo-controlled photo-optic machines with hydraulic systems. The desired fibre path was converted into machine path motion through a black-white interface on a drum; which was followed by a photo-optic device that controlled the machine function. During this time the filament winding machine became increasingly sophisticated in design; the addition of a third axis of motion (radial or crossfeed carriage), profile rails and ball shafts in combination with improved gearboxes resulted in smoother, more accurate filament winding.

By mid-70’s, machine design once again made a dramatic shift. This time the advancement of servo technology entered the realm of the machine design. High-speed computers allowed for rapid data processing, resulting in smoother motion and greater fibre placement accuracy. Increasingly, function that historically was
controlled through the use of belts, gears, pulley and chains was eventually being controlled through the use of computers.

The 1980s and 90s saw the increased use of computer technology. Computers and motion control cards became essential pieces of hardware that were included in almost every machine. Machine speed control was greatly improved; computer control systems could track position and velocity with increased accuracy. Additional axes of motions were also incorporated into machine design; allowing for four, five and even six axes of controlled motion.

At the same time a number of different companies began to experiment with the notion and development of pattern generation software. By creating pattern generation software, more complex configurations, such as tapered shafts, T-shaped parts and non-axisymmetric parts could be successfully wound.

3.5.2 Industrial Importance of Filament Winding Process

Since this fabrication technique allows production of strong, lightweight parts, it has proved particularly useful for components of aerospace, hydrospace and military applications and structures of commercial and industrial usefulness. Both the reinforcement and the matrix can be tailor-made to satisfy almost any property demand. This aids in widening the applicability of filament winding to the production of almost any commercial items wherein the strength to weight ratio is important. Apart from the strength-to-weight advantages and low cost of manufacturing, filament wound composite parts have better corrosion and electrical resistance properties.

3.5.3 Filament Winding: Process Technology

The process of filament winding is primarily used for hollow, generally circular or oval sectioned products. Fibers can either be use dry or be pulled through a resin bath before being wound onto the mandrel. The winding pattern is controlled by the rotational speed of the mandrel and the movement of the fiber feeding mechanism.
Filament winding usually refers to the conventional filament winding process. However some industrial companies use a called 'Fast Filament Winder' for producing pressure vessels. Basically the processes are the same (the fibers are wound around a mandrel following a certain pattern), but the way the machines work and the way the mandrel moves differs.

![Diagram of the filament winding process](image)

Figure 3.14 Schematic representation of the filament winding process.

After winding, the filament wound mandrel is subjected to curing and post curing operations during which the mandrel is continuously rotated to maintain uniformity of resin content around the circumference. After curing, product is removed from the mandrel, either by hydraulic or mechanical extractor.

Materials

- Any kind of continuous fiber and any kind of resin can be processed by filament winding.

Advantages

- Fast process.

- Low material costs because the fibers come straight from the creel (no need to convert fibers into fabrics prior to use).

- Structural properties of laminates can be very good since straight fibers can be
laid in a complex pattern to match the applied loads.

- Resin content can be controlled by metering the resin onto each fiber tow through nips or dies.

Figure 3.15 Some diagrams of filament wound products

Disadvantages

- Limited to convex shaped components.
- Mandrel costs can be high.
3.5.4 Filament Winding Materials

3.5.4.1 Fiber types (Reinforcement)

The mechanical properties of fibers dominantly contribute to the overall mechanical properties of the fiber/resin composite. The contribution of the fibers depends on four main factors:

• The basic mechanical properties of the fiber.

• The surface interaction of fiber and resin (interface).

• The amount of fibers in the composite (Fiber Volume Fraction).

• The orientation of the fibers in the composite.

The surface interaction of fiber and resin depends on the degree of bonding between the two. This interfacial bonding is heavily influenced by the kind of surface treatment given to the fiber surface (sizing). Also, sizing minimizes the damage due to handling. The choice in sizing depends on the desired performance of the composite, the kind of fiber and the way the fibers are going to be processed.

The amount of fibers in a composite determines the strength and stiffness. As a general rule, strength and stiffness of a laminate will increase proportional to the amount of fibers. However, above 60-70% Fiber Volume Fraction, tensile stiffness will continue to increase, while the laminate’s strength reaches a peak and then slowly decreases. In this situation there’s too little resin present to sufficiently hold the fibers together.

The orientation of the fibers in a composite largely contributes to the overall strength. Reinforcing fibers are designed to be loaded along their length, which means that the properties of the composite are highly direction-specific. By placing the fibers in the loading directions, the amount of material put in directions where there is little or no load can be minimized.
Carbon

Fibers show excellent mechanical properties compared to other fibers: high specific stiffness, very high strength in both compression and tension and a high resistance to corrosion, creep and fatigue. They are used as structural components and reinforcements in aerospace structures, for example airplanes' vertical fins, flaps, satellite platforms and in turbofan engines.

Carbon fibers provide the designer with the following properties:

- low density.
- high tensile modulus.
- high tensile strength
- good creep resistance
- good fatigue resistance
- good wear resistance
- low thermal expansion
- low friction
- good electrical conductivity
- good thermal conductivity, good chemical resistance
- bio compatibility
- low shrinkage
- reduced moisture absorption

Aramid

Fibers (most commonly known as 'Kevlar' or 'Twaron'), which have been commercially available since the 1960s, have found a wide field of applications. Their thermal properties facilitated their use as a substitute for asbestos. Aramid fibers, which show high energy absorption and ballistic properties as no other fibers, are used for bullet and fragment or impact resistance applications as well as for ropes and cables.
Aramid fibers provide the designer with the following properties:

- low density
- high tensile modulus
- high tensile strength
- good vibration damping
- high energy absorption
- high impact resistance
- low material fatigue, low compression strength
- good temperature resistance, good chemical resistance
- moderate adhesive properties
- low thermal conductivity

Glass fibers can be divided into groups according to their chemical composition. Well known are A-glass, C-glass, S-glass and E-glass fibers, whereof only the last one is widely used in aerospace applications. Glass fibers are produced from molten glass which is either produced directly or by melting glass marbles. The molten glass is poured into a tank and held at a constant temperature to retain a constant viscosity. The flowing glass forms filaments with diameters that can range from 1-25 10e-6 m.

Glass fibers provide the designer with the following properties:

- high tensile strength
- high shear modulus
- low Poisson's ratio
- good electrical resistance
- good thermal resistance
- low thermal expansion
- low price
3.5.4.2 Resin types (Matrix)

Resins (or matrix) are an important part of any composite. It’s basically the glue that keeps the composite together. A resin must have good mechanical properties, good adhesive properties, good toughness properties and good environmental properties.

For the mechanical properties this means that an ideal resin must be initially stiff but may not suffer brittle failure. And in order to achieve the full mechanical properties of the fiber, the resin must deform at least the same extend as the fiber.

Good adhesion between resin and reinforcement fibers ensures that the loads will be transferred efficiently and cracks and fiber/resin debonding will be prevented. The resistance to crack propagation is a measure for the material’s toughness. Because this is hard to measure accurately in composites, you can generally say that the more deformation a resin will accept before failure, the tougher the material will be. It’s important to match the toughness with the elongation of the fiber.

The environment in which the composite is used can be harsh. The resin must have good resistance to the environment it’s used in, especially water and other aggressive substances. Furthermore, the resin must be able to withstand constant stress cycling.

There are two different groups of so called matrix systems: Thermoset matrix systems and Thermoplastic matrix systems.

Thermoset matrix system

Thermosetting materials are formed from a chemical reaction, where the resin is mixed with a hardener or catalyst to undergo an irreversible chemical reaction. The result is a hard, infusible matrix. Although there are many different types of resin in use in the composite industry, the three most commonly used types of resin are thermosets: Polyester, Vinylester and Epoxy.
Thermoplastic matrix system

Thermoplastics, like metals, soften with heating and eventually melt, hardening again with cooling. This process of crossing the softening or melting point on the temperature scale can be repeated as often as desired without any appreciable effect on the material properties in either state. Typical thermoplastics include nylon, polypropylene and ABS, and these can be reinforced, although usually only with short, chopped fibers such as glass.

Polyester

Polyester resins, or simply polyesters, are the most commonly used and cheapest matrix in the marine and composite industry. In organic chemistry the reaction of an alcohol with an organic acid produces an ester and water. Using special alcohols, such as glycol, and adding different kind of compounds (different acids and monomers), results in a whole range of polyesters having varying properties.

Basically there are two types of polyesters used in composites: orthophthalic polyester and isophthalic polyester. The first one is the standard economic resin used by many people; the second one is becoming the preferred material in industries where superior water resistance is required.

Compared to the epoxy and vinylester, polyester shows the lowest adhesive and mechanical properties. The shrinkage due to curing is around 8%, which is higher than epoxy. This high shrinkage leads to build-in stresses and so called ‘print-through’ of the pattern of the reinforcing fibers. These cosmetic defects are difficult and expensive to ‘correct’.

Vinylester

The molecular structure of vinylester is the same as polyester, but differs in the location of the reactive sites of the structure. This difference makes vinylester tougher and more resilient than polyester. Because vinylester has fewer ester groups, which are susceptible to water degradation, it exhibits better resistance to water and many other chemicals than polyester. Because of this property, vinylester is
frequently used in applications such as pipelines and chemical storage tanks.

Compared to polyester, vinylester shows better adhesive and mechanical properties and a better resistance to water and chemicals. The shrinkage due to curing is the same as polyester, around 8%, giving the same problems with build-in stresses and ‘print-through’. The price level of vinylester is about two times the price level of polyester.

Epoxy

Epoxies generally out-perform most other resin types in terms of mechanical properties and resistance to environmental degradation. For this reason, epoxy resins are the most used resins in the aerospace industry for high performance fiber reinforced composites. It’s also the most expensive resin, exceeding the price level of polyester by 3 to 8 times.

The term 'epoxy' refers to a chemical group consisting of an oxygen atom bonded to two carbon atoms that are already bonded in some way. Epoxies differ from polyester and vinylester resins in that they are cured by a 'hardener' rather than a catalyst. Low shrinkage (around 2%), due to the different curing method, is in part responsible for the improved mechanical properties over polyester and vinylester.

3.5.4.3 Additives

By using various additives liquid resin systems can be made suitable to provide specific performance. Fillers constitute the greatest proportion of a formulation, second to the base resin. The most commonly used fillers are calcium carbonate, alumina silicate (clay) and alumina trihydrate. Calcium carbonate is primarily used as a volume extender to provide the lowest-cost-resin formulation in areas in which performance is not critical. Alumina trihydrate is an additive that is used for its ability to suppress flame and smoke generation. Fillers can be incorporated into the resins in quantities up to 50% of the total resin formulation by weight (100 parts filler per 100 parts resin). The usual volume limitation is based on the development
of usable viscosity, which depends on the particle size and the characteristics of the resin.

Special purpose additives include ultraviolet radiation screens for improved weatherability, *antimony oxide for flame retardance, pigments for coloration* and low-profile agents for surface smoothness and crack suppression characteristics. Mould release agents (metallic stearates, silicon gel or organic phosphate esters etc.) are important for adequate release from the mandrel to provide smooth surfaces and low processing friction.

3.5.5 Winding Patterns

In filament winding, one can vary winding tension, winding angle and/or resin content in each layer of reinforcement until desired thickness and strength of the composite are achieved. The properties of the finished composite can be varied by the type of winding pattern selected. Three basic filament winding patterns are:

3.5.5.1 Hoop Winding

It is known as girth or circumferential winding. Strictly speaking, hoop winding is a high angle helical winding that approaches an angle of 90 degrees. Each full rotation of the mandrel advances the band delivery by one full bandwidth as shown in Figure 3.16.

![Fig 3.16 Circumferential or hoop winding](image)
3.5.5.2 *Helical Winding*

In helical winding, mandrel rotates at a constant speed while the fibre feed carriage transverses back and forth at a speed regulated to generate the desired helical angles as shown in figure 3.17.

![Fig 3.17 Helical winding](image)

3.5.5.3 *Polar Winding*

In polar winding, the fibre passes tangentially to the polar opening at one end of the chamber, reverses direction, and passes tangentially to the opposite side of the polar opening at the other end. In other words, fibres are wrapped from pole to pole, as the mandrel arm rotates about the longitudinal axis as shown in figure 3.18. It is used to wind almost axial fibres on domed end type of pressure vessels. On vessels with parallel sides, a subsequent circumferential winding would be done.

![Fig 3.18 Polar winding](image)
In the above three, helical winding has great versatility. Almost any combination of diameter and length may be wound by trading off wind angle and circuits to close the patterns. Usually, all composite tubes and pressure vessels are produced by means of helical winding.

3.5.6 Mechanical Properties of Filament Wound Products

Table 3.3 Typical properties of filament wound pipes (glass fibre reinforced)

<table>
<thead>
<tr>
<th>Property</th>
<th>Typical Values</th>
<th>Predominant Process Variables *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>1.88-2.26</td>
<td>Glass/Resin Ratio</td>
</tr>
<tr>
<td>Tensile Strength, MPa (Helical Windings)</td>
<td>344-1034</td>
<td>Glass Type, Glass/Resin Ratio, Wind Pattern</td>
</tr>
<tr>
<td>Compressive Strength, MPa (Helical Windings)</td>
<td>276-551</td>
<td>Glass/Resin Ratio, Resin Type, Wind Pattern</td>
</tr>
<tr>
<td>Shear Strength, MPa: --Interlaminar</td>
<td>21-137</td>
<td>Resin Type, Wind Pattern, Glass/Resin Ratio, Resin Type</td>
</tr>
<tr>
<td></td>
<td>55-206</td>
<td></td>
</tr>
<tr>
<td>Modulus of Elasticity (Tension), GPa</td>
<td>21-41</td>
<td>Glass type, Wind Pattern</td>
</tr>
<tr>
<td>Modulus of Rigidity (Torsion), GPa</td>
<td>11-14</td>
<td>Wind Pattern</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>344-517</td>
<td>Wind Pattern, Glass/Resin Ratio</td>
</tr>
</tbody>
</table>

The Predominant Process Variables are those, which have the greatest influence upon the range in the particular values reported.

Table: 3.3 Property comparison: Filament wound composite vis-à-vis others

<table>
<thead>
<tr>
<th>Material *</th>
<th>Density (g/cc)</th>
<th>Tensile Strength (MPa)</th>
<th>Tensile Modulus (MPa)</th>
<th>Specific Tensile Strength (10^3 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament Wound Composite</td>
<td>1.99</td>
<td>1034</td>
<td>31.02</td>
<td>52.96</td>
</tr>
<tr>
<td>Aluminium 7075-T6</td>
<td>2.76</td>
<td>565</td>
<td>71.01</td>
<td>20.87</td>
</tr>
<tr>
<td>Stainless Steel -301</td>
<td>8.02</td>
<td>1275</td>
<td>199.94</td>
<td>16.20</td>
</tr>
<tr>
<td>Titanium Alloy (Ti-13 V-12 Cr-3 Al)</td>
<td>4.56</td>
<td>1275</td>
<td>110.3</td>
<td>28.50</td>
</tr>
</tbody>
</table>
For unidirectional composites, the reported modulus and tensile strength values are measured in the direction of fibers.
(Source: C-K Composites, Mount Pleasant, PA)

Table 3.4 Filament wound products: Applications Vs. Resin systems used

<table>
<thead>
<tr>
<th>Industry</th>
<th>Typical Application</th>
<th>Typical Resin Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion</td>
<td>• Underground Storage Tanks</td>
<td>Polyester (Ortho- and Iso-phthalic), Vinyl Ester</td>
</tr>
<tr>
<td></td>
<td>• Aboveground Storage Tanks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Piping Systems</td>
<td>Polyester (Ortho- and Iso-phthalic), Vinyl Ester, Epoxy, Phenolic</td>
</tr>
<tr>
<td></td>
<td>• Stack Liners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ducting Systems</td>
<td></td>
</tr>
<tr>
<td>Oilfield</td>
<td>• Piping Systems</td>
<td>Epoxy, Phenolic</td>
</tr>
<tr>
<td></td>
<td>• Drive Shafts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tubular Structures</td>
<td></td>
</tr>
<tr>
<td>Paper and Pulp</td>
<td>• Paper Rollers</td>
<td>Vinyl Ester, Epoxy</td>
</tr>
<tr>
<td></td>
<td>• Piping Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ducting Systems</td>
<td></td>
</tr>
<tr>
<td>Infrastructure and Civil Engineering</td>
<td>• Column Wrapping</td>
<td>Polyester (Ortho- and Iso-phthalic), Vinyl Ester, Epoxy</td>
</tr>
<tr>
<td></td>
<td>• Tubular Support Structures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Power Poles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Light Standards</td>
<td></td>
</tr>
<tr>
<td>Commercial Pressure Vessels</td>
<td>• Water Heaters</td>
<td>Polyester (Ortho- and Iso-phthalic), Vinyl Ester, Epoxy</td>
</tr>
<tr>
<td></td>
<td>• Solar Heaters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reverse Osmosis Tanks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Filter Tanks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SCBA (Self-Contained Breathing Apparatus) Tanks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Compressed Natural Gas Tanks</td>
<td></td>
</tr>
<tr>
<td>Aerospace</td>
<td>• Rocket Motor Cases</td>
<td>Epoxy, Bismaleimide (BMI), Phenolic, Vinyl Ester</td>
</tr>
<tr>
<td></td>
<td>• Drive Shafts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Launch Tubes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aircraft Fuselage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High Pressure Tanks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fuel Tanks</td>
<td></td>
</tr>
<tr>
<td>Marine</td>
<td>• Drive Shafts</td>
<td>Epoxy</td>
</tr>
<tr>
<td></td>
<td>• Mast and Boom Structures</td>
<td></td>
</tr>
<tr>
<td>Sports and Recreation</td>
<td>• Golf Shafts</td>
<td>Epoxy</td>
</tr>
<tr>
<td></td>
<td>• Bicycle Tubular Structures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wind Surfing Masts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ski Poles</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER FOUR
MECHANICS OF COMPOSITE MATERIALS

4.1 General

Linear elastic theories of fiber reinforced composite are developed and are widely used in engineering. In this chapter, elastic constitutive equations and micromechanical behaviour of composites are presented.

4.2 Elastic Constitutive Equation

The constitutive equations for a general linear elastic solid relates the stress and strain tensors through the expression

\[\sigma_{ij} = C_{ijkl} \varepsilon_{kl} \] \hspace{1cm} (4.1)

where;
\[\sigma_{ij}, \varepsilon_{kl} = \text{Stress tensor and strain tensor respectively} \]
\[C_{ijkl} = \text{The fourth order tensor of elastic constants} \]

Fiber reinforced composite materials are considered to have orthotropic elasticity because these materials possess three mutually perpendicular planes of the elastic symmetry. Constitutive equation orthotropic elasticity can be defined by giving nine individual elastic stiffness parameters. In this case the stress-strain relations are of the forms

\[
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
\tau_{12} \\
\tau_{13} \\
\tau_{23}
\end{bmatrix} =
\begin{bmatrix}
C_{1111} & C_{1122} & C_{1133} & 0 & 0 & 0 \\
C_{1222} & C_{2222} & C_{2233} & 0 & 0 & 0 \\
C_{1333} & C_{3333} & C_{3333} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{1212} & 0 & 0 \\
0 & 0 & 0 & C_{1213} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & C_{2323}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
\gamma_{12} \\
\gamma_{13} \\
\gamma_{23}
\end{bmatrix}
\] \hspace{1cm} (4.2)
where, material stiffness parameters \(C_{ijkl} \) are defined by engineering constant:

\[
C_{1111} = \frac{1-v_2 v_3}{E_2 E_3 \Delta}
\]

\[
C_{2222} = \frac{1-v_1 v_3}{E_1 E_3 \Delta}
\]

\[
C_{3333} = \frac{1-v_1 v_2}{E_1 E_2 \Delta}
\]

\[
C_{1122} = \frac{v_{21} + v_{31} v_{23}}{E_2 E_3 \Delta} = \frac{v_{12} + v_{32} v_{13}}{E_1 E_3 \Delta}
\]

\[
C_{1133} = \frac{v_{31} + v_{21} v_{32}}{E_2 E_3 \Delta} = \frac{v_{13} + v_{23} v_{12}}{E_1 E_3 \Delta}
\]

\[
C_{2233} = \frac{v_{22} + v_{12} v_{31}}{E_1 E_2 \Delta} = \frac{v_{23} + v_{33} v_{13}}{E_1 E_2 \Delta}
\]

\[
C_{1212} = G_{12}
\]

\[
C_{1313} = G_{13}
\]

\[
C_{2323} = G_{23}
\]

where;

\[
\Delta = \frac{1-v_2 v_3 - v_3 v_2 - v_1 v_3 - 2v_{21} v_{32} v_{13}}{E_1 E_2 E_3}
\]

(4.4)

Due to composite material’s stability there are restrictions on the elastic constants as follows:

\[
C_{ijkl} > 0
\]

\[
|C_{1122}| < \sqrt{C_{1111} C_{2222}}
\]

\[
|C_{1133}| < \sqrt{C_{1111} C_{3333}}
\]

\[
|C_{2233}| < \sqrt{C_{2222} C_{3333}}
\]

(4.5)
Composite materials are compressible. Therefore, the determinant of the stiffness matrix should be positive,

\[\text{det}(C_{ijkl}) > 0 \] \hspace{1cm} (4.6a)

or

\[C_{1111}C_{2222}C_{3333} + 2C_{1122}C_{1133}C_{2233} - C_{2222}C_{1133}^2 - C_{1111}C_{2233}^2 - C_{3333}C_{1122}^2 > 0 \] \hspace{1cm} (4.6b)

It is obvious that elastic constants \(C_{ijkl} \) depend on the elastic modulus, shear modulus and Poisson’s ratio. However, these material parameters are difficult to obtain by experimental investigation. The alternative choice is to evaluate these material parameters by a micro mechanics approach.

4.3 Micromechanical Behaviour of Composites

Fiber reinforced composite materials (FRC) are built from fibers and a resin matrix. Mechanical properties of FRC materials not only depend on properties fibers and resin used but also depend on the organization and the envelopment of fibers in the resin matrix. The interfacial bonding strength between fiber and resin is another factor that affects the strength of the composite. Filament wound composite pressure vessels maybe regarded as an assembly of unidirectional FRC are the focus of this work.

Currently, there are several models to describe and evaluate the properties of composites, as found from literature review. The rule of mixtures based on a simple one-dimensional model is the simplest. In terms of longitudinal modulus and in-plane Poisson’s ratio the results match the experimental data very well and are written as follows.
\[E_1 = \varphi E_f + (1 - \varphi) E_m \]
(4.7)

\[\nu_{12} = \varphi \nu_f + (1 - \varphi) \nu_m \]
(4.8)

where: \(\varphi = \text{Fiber volume fraction} \)

The most advanced theory to evaluate the transverse modulus of the unidirectional laminates was derived by Hashin. The equations are complex, and some of material constants are difficult to establish. Highly sophisticated mathematical models are not useful when if the required data are not available. When Chamis’s formula is compared Hashin’s theory, it is found that the results are similar, though Chamis’s formula is very simple. Thus it is recommended to employ Chamis’s formula for transverse elastic modulus as follows

\[E_{22} = \frac{E_m}{1 - (1 - \frac{E_m}{E_{22}^f}) \sqrt{\varphi}} \]
(4.9)

where \(E_{22}^f = \text{Fiber transversal elastic modulus} \)

For similar reasons, the shear modulus proposed by Chamis is also recommended

\[G_{12} = \frac{G_m}{1 - (1 - \frac{G_m}{G_{12}^f}) \sqrt{\varphi}} \]
(4.10)

The in-plane Poisson’s ratio \(\nu_{21} \) can be derived by the reciprocity relationship

\[\nu_{21} = \frac{\nu_{12} E_{11}}{E_{22}} \]
(4.11)

The out of plane shear modulus transverse to the fiber direction \(G_{23} \) is proposed by Hashin with upper and lower bound values. Tsai also presented equations (4.6, 4.7) for \(G_{23} \) which agrees quite well with Hashin’s upper bound and is relatively simple.
\[G_{23} = \frac{\varphi + \delta(1-\varphi)}{G_{23}^f + \delta(1-\varphi)} \]

(4.12)

and

\[\delta = \frac{3-4\nu_m + \frac{G_m}{G_{23}^f}}{4(1-\nu_m)} \]

(4.13)

Equations (4.1) to (4.13) are based on the assumption that both fiber and resin deform elastically and there are no voids within the resin. In fact void content has a significant effect on mechanical properties and is not discussed here.

4.4 Macromechanical Behaviour of a Lamina

4.4.1 Stress-Strain Relations for Plane Stress in an Orthotropic Material

For a unidirectional reinforced lamina in the 1-2 plane as shown in Figure 2.1, a plane stress state is defined by setting

\[\sigma_3 = 0 \quad \tau_{23} = 0 \quad \tau_{31} = 0 \]

(4.14)

so that

\[\sigma_1 \neq 0 \quad \sigma_2 \neq 0 \quad \tau_{12} \neq 0 \]

(4.15)

Plane stress on a lamina is not merely an idealization of reality, but instead is a practical and achievable objective of how we must use a lamina with fibers in its plane. After all, the lamina cannot withstand high stresses in any direction other than that of the fibers, so why would we subject it to unnatural stresses such as \(\sigma_3 \)? That is, we except to load a lamina only in plane stress because carrying in-plane stresses is its fundamental capability. A unidirectional reinforced lamina would need ‘help’ carrying in-plane stress perpendicular to its fibers, but that help can be provided by
other (parallel) layers that have their fibers in the direction of the stress. Thus, a laminate is needed, but we concentrate on the characteristics of a lamina in this section.

Figure 4.1 Unidirectionally reinforced lamina.

For orthotropic materials, imposing a state of plane stress results in implied out-of-plane strains of

\[\varepsilon_3 = S_{13} \sigma_1 + S_{23} \sigma_2 \quad \gamma_{23} = 0 \quad \gamma_{31} = 0 \]

(4.16)

where

\[S_{13} = \frac{V_{13}}{E_1} = \frac{V_{31}}{E_3} \quad S_{23} = \frac{V_{23}}{E_2} = \frac{V_{32}}{E_3} \]

(4.17)

Moreover, the strain-stress relations

\[\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} \]

(4.18)
supplemented by Equation (4.16) where

\[
S_{11} = \frac{1}{E_1}, \quad S_{12} = -\frac{\nu_{12}}{E_1}, \quad S_{22} = \frac{1}{E_2}, \quad S_{66} = \frac{1}{G_{12}}
\]

(4.19)

Note that in order to determinate \(\varepsilon_3\) in Equation (4.16), \(\nu_{13}\) and \(\nu_{23}\) must be known in addition to the engineering constants in Equation (4.19). That is, \(\nu_{13}\) and \(\nu_{13}\) arise from \(S_{13}\) and \(S_{23}\) in Equation (4.16).

The strain-stress relations in Equation (4.18) can be inverted to obtain the stress-strain relations

\[
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix} =
\begin{bmatrix}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}
\end{bmatrix}
\]

(4.20)

where the \(Q_{ij}\) are the so-called reduced stiffnesses for a plane stress state in the 1-2 plane which are determined either (1) as the components of the inverted compliance matrix in Equation (4.18) or (2) from the \(C_{ij}\) directly by applying the condition \(\sigma_3 = 0\) to the strain-stress relations to get an expression for \(\varepsilon_3\) and simplifying the results to get

\[
Q_{ij} = C_{ij} - \frac{C_{i3} C_{j3}}{C_{33}} \quad i,j=1,2,6
\]

(4.21)

The term \(C_{63}\) is zero because no shear-extension coupling exists for an orthotropic lamina in principal material coordinates. For the orthotropic lamina, the \(Q_{ij}\) are

\[
\begin{align*}
Q_{11} &= \frac{S_{22}}{S_{11} S_{22} - S_{12}^2} \\
Q_{12} &= \frac{S_{12}}{S_{11} S_{22} - S_{12}^2} \\
Q_{22} &= \frac{S_{11}}{S_{11} S_{22} - S_{12}^2} \\
Q_{66} &= \frac{1}{S_{66}}
\end{align*}
\]

(4.22)
or, in terms of the engineering constants,

\[Q_{11} = \frac{E_1}{1 - v_{12}v_{21}} \quad Q_{22} = \frac{E_2}{1 - v_{12}v_{21}} \]
\[Q_{12} = \frac{v_{12}E_2}{1 - v_{12}v_{21}} = \frac{v_{21}E_1}{1 - v_{12}v_{21}} \quad Q_{66} = G_{12} \quad (4.23) \]

Note that there are four independent material properties; \(E_1, E_2, v_{12} \) and \(G_{12} \), in Equations (4.18) and (4.20) are considered in addition to the reciprocal relation

\[\frac{v_{12}}{E_1} = \frac{v_{21}}{E_2} \quad (4.24) \]

The preceding stress-stain and strain-stress relations are the basis for stiffness and stress analysis of an individual lamina subjected to forces in its own plane. Thus, the relations are indispensable in laminate analysis.

4.4.2 Stress-Strain Relations for a Lamina of Arbitrary Orientation

The stresses and strains were defined in the principal material coordinates for an orthotropic material. However, the principal directions of orthotropic often do not coincide with coordinate directions that are geometrically natural to the solution of the problem. For example, consider the helically wound fiber-reinforced circular cylindrical shell in Figure 2.2. There, the coordinates natural to the solution of the shell problem are the shell coordinates \(x', y', z' \). The filament-winding angle is defined by \(\cos(y', y) = \cos \alpha \); also, \(z' = z \). Other examples include laminated plates with different laminae at different orientations. Thus, a relation is needed between the stresses and strains in the principal material coordinates and those in the body coordinates. Then, a method of transforming stress-strain relations from one coordinate system to another is also needed.

At this point, we recall from elementary mechanics of materials the transformation equations for expressing stresses in an \(z-y \) coordinate system in terms of stresses in a \(1-2 \) coordinate system,
Figure 4.2 Helically wound fiber-reinforced circular cylindrical shell.

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} =
\begin{bmatrix}
\cos^2 \theta & \sin^2 \theta & -2 \sin \theta \cos \theta \\
\sin^2 \theta & \cos^2 \theta & 2 \sin \theta \cos \theta \\
\sin \theta \cos \theta & -\sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta
\end{bmatrix}
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix}
\]

(4.25)

where \(\theta\) is the angle from the z-axis to the 1-axis (see Figure 4.3). Note especially that the transformation has nothing to do with the material properties but is merely a rotation of stress directions. Also, the direction of rotation is crucial.

Similarly, the strain-transformation equations are

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} =
\begin{bmatrix}
\cos^2 \theta & \sin^2 \theta & -2 \sin \theta \cos \theta \\
\sin^2 \theta & \cos^2 \theta & 2 \sin \theta \cos \theta \\
\sin \theta \cos \theta & -\sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta
\end{bmatrix}
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}/2
\end{bmatrix}
\]

(4.26)
Figure 4.3 Positive rotation of principal material axes from x-y axes.

where we observe that strains do transform with the same transformation as stresses if the tensor definition of shear strain is used (which is equivalent to dividing the engineering shear strain by two).

The transformations are commonly written as

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix}
= [T]^{-1}
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix}
\] \hspace{1cm} (4.27)

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}/2
\end{bmatrix}
= [T]^{-1}
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}/2
\end{bmatrix}
\] \hspace{1cm} (4.28)

where the superscript -1 denotes the matrix inverse and

\[
[T] =
\begin{bmatrix}
\cos^2 \theta & \sin^2 \theta & 2\sin \theta \cos \theta \\
\sin^2 \theta & \cos^2 \theta & -2\sin \theta \cos \theta \\
-\sin \theta \cos \theta & \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta
\end{bmatrix}
\] \hspace{1cm} (4.29)

However, if the simplex matrix
due to Reuter is introduced, then the engineering strain vectors

\[
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{bmatrix}
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}/2
\end{bmatrix}
\] (4.30)

can be used instead of the tensor strain vectors in the strain transformations as well as in stress-strain law transformations, the beauty of Reuter’s transformation is that concise matrix notation can then be used. As a result, the ordinary expressions for stiffness and compliance matrices with awkward factors of 1/2 and 2 in various rows and columns are avoided.

A so-called \textit{specially orthotropic lamina} is an orthotropic lamina whose principal material axes are aligned with the natural body axes:

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} = \begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}/2
\end{bmatrix} = \begin{bmatrix}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}/2
\end{bmatrix}
\] (4.33)

where the principal material axes are shown in Figure 4.1. These stress-strain relations apply when the principal material directions of an orthotropic lamina are used as coordinates.

However, as mentioned previously, orthotropic laminae are often constructed in such a manner that the principal material coordinates do not to be interpreted as
meaning that the principal material coordinates do not coincide with the natural coordinates of the body. This statement is not to be interpreted as meaning that the material itself is no longer orthotropic; instead, we are just looking at an orthotropic material in an unnatural manner, i.e., in a coordinate system that is oriented at some angle to the principal material coordinate system. Then, the basic question is: given the stress-strain relations in the principal material coordinates, what are the stress-strain relations in x-y coordinates?

Accordingly, we use the stress and strain transformations of Equations (4.27) and (4.28) along with Reuter’s matrix, Equation (4.30), after abbreviating Equation (4.33) as

$$
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix} = [Q]
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}
\end{bmatrix}
$$

(4.34)

to obtain

$$
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} = [T]^{-1}
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix} = [T]^{-1}[Q][R][T]^{-1}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix}
$$

(4.35)

However, $[R][T][R]^{-1}$ can be shown to be $[R]^{-T}$ where the superscript T denotes the matrix transpose. Then, if we use the abbreviation

$$
[\bar{Q}] = [T]^{-1}[Q][T]^{-T}
$$

(4.36)

the stress-strain relations in x-y coordinates are

$$
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} = \bar{Q}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} = \begin{bmatrix}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix}
$$

(4.37)
in which

\[
Q_{11} = Q_{11} \cos^4 \theta + 2(Q_{12} + 2Q_{66}) \sin^2 \theta \cos^2 \theta + Q_{22} \sin^4 \theta \\
Q_{12} = (Q_{11} + Q_{12} - 4Q_{66}) \sin^2 \theta \cos^2 \theta + Q_{12} (\sin^4 \theta + \cos^4 \theta) \\
Q_{22} = Q_{11} \sin^4 \theta + 2(Q_{12} + 2Q_{66}) \sin^2 \theta \cos^2 \theta + Q_{22} \cos^4 \theta \\
Q_{16} = (Q_{11} - Q_{12} - 2Q_{66}) \sin \theta \cos^3 \theta + (Q_{12} - Q_{22} + 2Q_{66}) \sin^3 \theta \cos \theta \\
Q_{26} = (Q_{11} - Q_{12} - 2Q_{66}) \sin^3 \theta \cos \theta + (Q_{12} - Q_{22} + 2Q_{66}) \sin \theta \cos^3 \theta \\
Q_{66} = (Q_{11} + Q_{22} - 2Q_{66}) \sin^2 \theta \cos^2 \theta + Q_{66} (\sin^4 \theta + \cos^4 \theta)
\]

(4.38)

where the bar over the \(Q_{ij}\) matrix denotes that we are dealing with the transformed reduced stiffnesses instead of the reduced stiffnesses, \(Q_{ij}\).

Note that the transformed reduced stiffness matrix \(\overline{Q}_{ij}\) has terms in all nine positions in contrast to the presence of zeros in the reduced stiffness matrix \(Q_{ij}\). However, there are still only *four* independent material constants because the lamina is orthotropic. In the general case with body coordinates \(x\) and \(y\), there is coupling between shear strain and normal stresses and between shear stress and normal strains, i.e., shear-extension coupling exists. Thus, in body coordinates, even an orthotropic lamina appears to be anisotropic. However, because such a lamina does have orthotropic characteristics in principal material coordinates, it is called a *generally orthotropic lamina* because it can be represented by the stress-strain relations in Equation (4.37). That is, a *generally orthotropic lamina* is an orthotropic lamina whose principal material axes are not aligned with the natural body axes.

The only advantage associated with generally orthotropic laminae as opposed to anisotropic laminae is that generally orthotropic laminae are easier to characterize experimentally. However, if we do not realize that principal material axes exist, then a generally orthotropic lamina is indistinguishable from an anisotropic lamina. That is, we cannot take away the inherent orthotropic character of a lamina, but we can orient the lamina in such a manner as to make that character quite difficult to recognize.

As an alternative to the foregoing procedure, we can express the strains in terms of the stresses in body coordinates by either (1) inversion of the stress-strain relations...
in Equation (4.37) or (2) transformation of the strain-stress relations in principal material coordinates from Equation (4.18),

$$\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}
\end{bmatrix} =
\begin{bmatrix}
S_{11} & S_{12} & 0 \\
S_{12} & S_{22} & 0 \\
0 & 0 & S_{66}
\end{bmatrix}
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix}
(4.39)$$

to body coordinates. We choose the second approach and apply the transformations of Equations (4.27) and (4.28) along with Reuter’s matrix, Equation (4.30), to obtain

$$\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} = [T]^T [S][T]
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} =
\begin{bmatrix}
\bar{S}_{11} & \bar{S}_{12} & \bar{S}_{16} \\
\bar{S}_{12} & \bar{S}_{22} & \bar{S}_{26} \\
\bar{S}_{16} & \bar{S}_{26} & \bar{S}_{66}
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix}
(4.40)$$

where $[R]^{-1}[T]^{-1}$ was found to be $[T]^T$ and

$$\bar{S}_{11} = S_{11} \cos^4 \theta + (2S_{12} + S_{66}) \sin^2 \theta \cos^2 \theta + S_{22} \sin^4 \theta$$
$$\bar{S}_{12} = S_{12} (\sin^4 \theta \cos^4 \theta) + (S_{11} + S_{22} - S_{66}) \sin^2 \theta \cos^2 \theta$$
$$\bar{S}_{22} = S_{11} \sin^4 \theta + (2S_{12} + S_{66}) \sin^2 \theta \cos^2 \theta + S_{22} \cos^4 \theta$$
$$\bar{S}_{16} = (2S_{11} - 2S_{12} - S_{66}) \sin \theta \cos^3 \theta - (2S_{22} - 2S_{12} - S_{66}) \sin^3 \theta \cos \theta$$
$$\bar{S}_{26} = (2S_{11} - 2S_{12} - S_{66}) \sin^3 \theta \cos \theta - (2S_{22} - 2S_{12} - S_{66}) \sin \theta \cos^3 \theta$$
$$\bar{S}_{66} = 2(S_{11} + 2S_{22} - 4S_{12} - S_{66}) \sin^2 \theta \cos^2 \theta + S_{66} (\sin^4 \theta + \cos^4 \theta)$$

(4.41)

Recall that the S_{ij} are defined in terms of the engineering constants in Equation (4.19)

Because of the presence of Q_{16} and Q_{26} in Equation (4.37) and of S_{16} and S_{26} in Equation (4.40), the solution of problems involving so called generally orthotropic laminae is more difficult than problems with so-called specially orthotropic laminae. That is, shear-extension coupling complicates the solution of practical problems. As a matter of fact, there is no difference between solutions for generally orthotropic laminae and those for anisotropic laminae whose stress-strain relations, under conditions of plane stress, can be written as...
\[
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix} =
\begin{bmatrix}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}
\end{bmatrix}
\]

or in inverted form as

\[
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}
\end{bmatrix} =
\begin{bmatrix}
S_{11} & S_{12} & S_{16} \\
S_{12} & S_{22} & S_{26} \\
S_{16} & S_{26} & S_{66}
\end{bmatrix}
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix}
\]

where the anisotropic compliances in terms of the engineering constants are

\[
S_{11} = \frac{1}{E_1}, \quad S_{12} = \frac{1}{E_2}, \quad S_{16} = \frac{\eta_{12,1}}{E_1} = \frac{\eta_{11,12}}{G_{12}}
\]

\[
S_{12} = -\frac{\nu_{12}}{E_1} = -\frac{\nu_{21}}{E_2}, \quad S_{66} = \frac{1}{G_{12}}, \quad S_{26} = \frac{\eta_{12,2}}{E_2} = \frac{\eta_{21,2}}{G_{12}}
\]

Note that some new engineering constants have been used. The new constants are called \textit{coefficients of mutual influence} by Lekhnitski and are defined as

\[
\eta_{i,j} = \text{coefficient of mutual influence of the first kind that characterizes stretching in the i-direction caused by shear stress in the ij-plane}
\]

\[
\eta_{i,j} = \frac{\varepsilon_i}{\gamma_j}
\]

for \(\tau_j = \tau \) and all other stresses are zero.

\[
\eta_{j,i} = \text{coefficient of mutual influence of the second kind characterizing shearing in the ij-plane caused by normal stress in the i-direction}
\]

\[
\eta_{j,i} = \frac{\gamma_j}{\varepsilon_i}
\]

for \(\sigma_{ij} = \sigma \) and all other stresses are zero.
Lekhnitskii defines the coefficients of mutual influence and the Poisson’s ratios with subscripts that are reversed from the present notation. The coefficients of mutual influence are not named very effectively because the Poisson’s ratios could also be called coefficients of mutual influence. Instead, the $\eta_{ij,j}$ and $\eta_{i,ij}$ are more appropriately called by the functional name shear-extension coupling coefficients.

Other anisotropic elasticity relations are used to define Chentsov coefficients that are to shearing strains what Poisson’s ratios are to shearing stresses and shearing strains. However, the Chentsov coefficients do not affect the in-plane behaviour of laminae under plane stress. The Chentsov coefficients are defined as

$$\mu_{ij,kl} = \text{Chentsov coefficient that characterizes the shearing strain in the kl-plane due to shearing stress in the ij-plane, i.e.,}$$

$$\mu_{ij,kl} = \eta_{kl} \gamma_{ij}$$

(4.47)

for $\tau_{ij} = \tau$ and all other stresses are zero.

The Chentsov coefficients are subject to the reciprocal relations

$$\frac{\mu_{kl,ij}}{G_{kl}} = \frac{\mu_{ij,kl}}{G_{ij}}$$

(4.48)

Note that the Chentsov coefficients are more effectively called the functional name of shear-shear coupling coefficients.

The out-of-plane shearing strains of an anisotropic lamina due to in-plane shearing stress and normal stresses are

$$\gamma_{13} = \eta_{1,13} \sigma_{1} + \eta_{2,13} \sigma_{2} + \mu_{12,13} \tau_{12}$$

$$\gamma_{23} = \eta_{1,23} \sigma_{1} + \eta_{2,23} \sigma_{2} + \mu_{12,23} \tau_{12}$$

(4.49)
wherein both the shear-shear coupling coefficients and the shear-extension coupling coefficients are required. Note that neither of these shear strains arise in an orthotropic material unless it is stressed in coordinates other than the principal material coordinates. In such cases, the shear-shear coupling coefficients and the shear-extension coupling coefficients are obtained from the transformed compliances as in the following paragraph.

Compare the transformed orthotropic compliances in Equation (4.41) with the anisotropic compliances in terms of engineering constants in Equations (4.44). Obviously an apparent shear-extension coupling coefficient results when an orthotropic lamina is stressed in non-principal material coordinates. Redesignate the coordinates 1 and 2 in Equation (4.43) as x and y because, by definition, an anisotropic material has no principal material directions. Then, substitute the redesignated S_{ij} from Equation (4.44) in Equation (4.41) along with the orthotropic compliances in Equation (4.19). Finally, the apparent engineering constants for an orthotropic lamina that is stressed in non-principal x-y coordinates are

$$
\frac{1}{E_x} = \frac{1}{E_i} \cos^4 \theta + \left[\frac{1}{G_{12}} + \frac{2
u_{12}}{E_i} \right] \sin^2 \theta \cos^2 \theta + \frac{1}{E_2} \sin^4 \theta
$$

$$\nu_{xy} = E_x \left[\frac{\nu_{12}}{E_i} \left(\sin^4 \theta + \cos^4 \theta \right) - \left[\frac{1}{E_i} + \frac{1}{E_2} - \frac{1}{G_{12}} \right] \sin^2 \theta \cos^2 \theta \right]$$

$$\frac{1}{E_y} = \frac{1}{E_i} \sin^4 \theta + \left[\frac{1}{G_{12}} \frac{2 \nu_{12}}{E_i} \right] \sin^2 \theta \cos^2 \theta + \frac{1}{E_2} \cos^4 \theta$$

$$\frac{1}{G_{xy}} = 2 \left[\frac{2}{E_i} + \frac{2 \nu_{12}}{E_2} - \frac{1}{G_{12}} \right] \sin^2 \theta \cos^2 \theta + \frac{1}{G_{12}} \left(\sin^4 \theta \cos^4 \theta \right)$$

$$\eta_{xy,x} = E_x \left[\frac{2}{E_i} \frac{2 \nu_{12}}{E_1} \frac{1}{G_{12}} \right] \sin \theta \cos^3 \theta - \left[\frac{2}{E_i} \frac{2 \nu_{12}}{E_1} \frac{1}{G_{12}} \right] \sin^3 \theta \cos \theta$$

$$\eta_{xy,y} = E_y \left[\frac{2}{E_1} \frac{2 \nu_{12}}{E_i} \frac{1}{G_{12}} \right] \sin^3 \theta \cos \theta - \left[\frac{2}{E_2} \frac{2 \nu_{12}}{E_1} \frac{1}{G_{12}} \right] \sin \theta \cos^3 \theta$$

(4.50)
4.5 Macromechanical Behaviour of a Laminate

4.5.1 Classical Lamination Theory

Classical lamination theory consists of a collection of mechanics-of-materials type of stress and deformation hypotheses that are described in the section. By use of this theory, we can consistently proceed directly from the basic building block, the lamina, to the end result, a structural laminate. The whole process is one of finding effective and reasonably accurate simplifying assumptions that enable us to reduce our attention from a complicated three-dimensional elasticity problem to a solvable two-dimensional mechanics of deformable bodies problem.

Actually, because of the stress and deformation hypotheses that are an inseparable part of classical thin lamination theory, or even classical laminated plate theory. We will use the common term classical lamination theory, but recognize that it is a convenient oversimplification of the rigorous nomenclature. In the composite materials literature, classical lamination theory is often abbreviated as CLT.

First, the stress-strain behaviour of an individual lamina is reviewed in Section 4.5.2, and expressed in equation form for the k^{th} lamina of a laminate. Then, the variations of stress and strain through the thickness of the laminate are determined in Section 4.5.3. Finally, the relation of the laminate forces and moments to the strains and curvatures is founding Section 4.5.4 where the laminate stiffnesses are the link from the forces and moments to the strains and curvatures.

4.5.2 Lamina Stress-Strain Behaviour

The stress-strain relations in principal material coordinates for a lamina of an orthotropic material under plane stress are

$$
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix} =
\begin{bmatrix}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{bmatrix}
\begin{bmatrix}
e_1 \\
e_2 \\
gamma_{12}
\end{bmatrix}
$$

(4.51)
The reduced stiffnesses, Q_{ij}, are defined in terms of the engineering constants in Equation (4.23). In any other coordinate system in the plane of the lamina, the stresses are

$$
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} =
\begin{bmatrix}
\overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\
\overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\
\overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix}
$$

(4.52)

where the transformed reduced stiffnesses, \overline{Q}_{ij}, are given in terms of the reduced stiffnesses, Q_{ij}, in Equation (4.38).

The stress-strain relations in arbitrary in-plane coordinates, namely Equation (4.52), are useful in the definition of the laminate stiffnesses because of the arbitrary orientation of the constituent laminae. Both Equations (4.51) and (4.52) can be thought of as stress-strain relations for the k^{th} layer of a multilayered laminate. Thus, Equation (4.52) can be written as

$$\{\sigma\}_k = [\overline{Q}]_k \{\varepsilon\}_k$$

(4.53)

We will proceed in the next section to define the strain and stress variations through the thickness of a laminate will then be obtained in Section 4.5.4 by integrating the stress-strain relations for each layer, Equation (4.53), through the laminate thickness subject to the stress and strain variations determined in Section 4.5.3.

4.5.3 Strain and Stress Variation in a Laminate

Knowledge of the variation of stress and strain though the laminate thickness is essential to the definition of the extensional and bending stiffnesses of a laminate. The laminate is presumed to consist of perfectly bonded laminae. Moreover, the
bonds are presumed to be infinitesimally thin as well as non-shear-deformable. That is, the displacements are continuous across lamina boundaries so that no lamina can slip relative to another. Thus, the laminate acts as a single layer with very special properties that later we will see constitute a structural element.

Accordingly, if the laminate is thin, a line originally straight and perpendicular to the middle surface of the laminate, i.e., a normal to the middle surface, is assumed to remain straight and perpendicular to the middle surface when the laminate is deformed, e.g., bent, extended, contracted, sheared, or twisted. Requiring the normal to the middle surface to remain straight and normal under deformation is equivalent to ignoring the shearing strains in planes perpendicular to the middle surface, that is, \(y_{xz} = y_{yz} = 0 \) where \(z \) is the direction of the normal to the middle surface in Figure 4.4 (note that \(y_{xz} \) and \(y_{yz} \) are the angles that a deformed normal would make with the deformed middle surface.) In addition, the normals are presumed to have constant length so that the strain perpendicular to the middle surface is ignored as well, that is, \(\varepsilon_z = 0 \). The foregoing collection of assumptions of the behaviour of the single layer that represents the laminate constitutes the familiar Kirchhoff hypothesis for plates and the Kirchhoff-Love hypothesis for shells (and is the two-dimensional analog of the ordinary one-dimensional beam theory assumption that plane sections, i.e., sections normal to the beam axis, remain plane after bending- thus, the physical justification of the collection of assumptions should be obvious). Note that no restriction has been made to flat laminates; the laminates can, in fact, be curved or shell like.

The implications of Kirchhoff hypothesis on the laminate displacements \(u, v, \) and \(w \) in the \(x-, y-, \) and \(z\)-directions are derived by use of the laminate cross section in the \(x-z \) plane shown in Figure 4.4. The displacement in the \(x\)-direction of point \(B \) from the undeformed middle surface to the deformed middle surface is \(u_0 \) (the symbol ‘nought’ \((^0) \) is used to designate middle-surface values of variable). Because line ABCD remains straight under deformations of the laminate, the displacement at point \(C \) is
Figure 4.4 Geometry of Deformation in the x-z plane.

\[
U_c = U_0 - Z_c \beta \tag{4.54}
\]

But because, under deformation, line ABCD further remains perpendicular to the middle surface, \(\beta \) is the slope of the laminate middle surface in the x-direction, that is,

\[
\beta = \frac{\partial w_0}{\partial x} \tag{4.55}
\]

Then, the displacement, \(u \), at any point \(z \) through the laminate thickness is

\[
u = u_o - z = \frac{\partial w_0}{\partial x} \tag{4.56}
\]

By similar reasoning, the displacement, \(v \), in the y-direction is

\[
v = v_o - z = \frac{\partial w_0}{\partial y} \tag{4.57}
\]
The laminate strains have been reduced to ε_x, ε_y, and γ_{xy} by virtue of the Kirchhoff hypothesis. That is $\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0$ for small strains (linear elasticity), the remaining strains are defined in terms of displacements as

$$
\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}, \quad \gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}
$$

(4.58)

Thus, for the derived displacements u and v in Equations (4.56) and (4.57), the strains are

$$
\varepsilon_x = \frac{\partial u_0}{\partial x} - \frac{\partial^2 w_0}{\partial x^2}, \quad \varepsilon_y = \frac{\partial v_0}{\partial y} - z \frac{\partial^2 w_0}{\partial y^2}, \quad \gamma_{xy} = \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} - 2z \frac{\partial^2 w_0}{\partial x \partial y}
$$

(4.59)

or

$$
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} = \begin{bmatrix}
\varepsilon_x^0 \\
\varepsilon_y^0 \\
\gamma_{xy}^0
\end{bmatrix} + \begin{bmatrix}
k_x
\end{bmatrix}
$$

(4.60)

where the middle-surface strains are

$$
\begin{bmatrix}
\varepsilon_x^0 \\
\varepsilon_y^0 \\
\gamma_{xy}^0
\end{bmatrix} = \begin{bmatrix}
\frac{\partial u_0}{\partial x} \\
\frac{\partial v_0}{\partial y} \\
\frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x}
\end{bmatrix}
$$

(4.61)
and the middle-surface curvatures are

\[
\begin{bmatrix}
 k_x \\
 k_y \\
 k_{xy}
\end{bmatrix} =
\begin{bmatrix}
 \frac{\partial^2 w_0}{\partial x^2} \\
 \frac{\partial^2 w_0}{\partial y^2} \\
 \frac{1}{2} \frac{\partial^3 w_0}{\partial x \partial y^2}
\end{bmatrix}
\] (4.62)

(The last term in Equation (4.62) is the twist curvature of the middle surface.) We refer only to curvatures of the middle surface as a reference surface and not of any other surface, so nought superscripts are not needed on \(k_x\), \(k_y\), and \(k_{xy}\). Thus, the Kirchhoff hypothesis has been readily verified to imply a linear variation of strain through the laminate thickness because the strains in Equation (4.60) have the form of a straight line, i.e., \(y = mx + b\). The foregoing strain analysis is valid only for plates because of the strain-displacement relations in Equation (4.58). For circular cylindrical shells, the \(\varepsilon_y\) term in Equation (4.58) must be supplemented by \(w_0/r\) where \(r\) is the shell radius; other shells have more complicated strain-displacement relations.

By substitution of the strain variation through the thickness, Equation (4.60), in the stress-strain relation, Equation (4.53), the stresses in the \(k^{th}\) layer can be expressed in terms of the laminate middle-surface strains and curvature as

\[
\begin{bmatrix}
 \sigma_x \\
 \sigma_y \\
 \tau_{xy}
\end{bmatrix} =
\begin{bmatrix}
 \bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
 \bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
 \bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
\end{bmatrix}
\begin{bmatrix}
 \varepsilon_x \varepsilon_y \\
 y_x y_y
\end{bmatrix}
+ \begin{bmatrix}
 k_x \\
 k_y \\
 k_{xy}
\end{bmatrix}
\] (4.63)

The \(Q_{ij}\) can be different for each layer of the laminate, so the stress variation through the strain variation is linear. Instead, typical strain and stress variations are shown in Figure 4.5 where the stresses are piecewise linear (i.e., linear in each layer, but discontinuous at boundaries between laminae).
4.5.4 Resultant Laminate Forces and Moments

The resultant forces and moments acting on a laminate are obtained by integration of the stresses in each layer or lamina through the laminate thickness, for example,

\[N_x = \int_{-t/2}^{t/2} \sigma_x \, dz \quad M_x = \int_{-t/2}^{t/2} \sigma_x z \, dz \]

(4.64)

Note in Figure 4.5 that the stresses vary within each lamina as well as from lamina to lamina, so the integration is not trivial. Actually \(N_x \) is a force per unit width of the cross section of the laminate as shown in Figure 4.6.

Similarly, \(M_x \) is a moment per unit width as shown in Figure 4.7. However, \(N_x \), etc., and \(M_x \), etc., will be referred to as forces and moments with the stipulation of ‘per
unit width’ being dropped for convenience. The entire collection of force and moment resultants for an N-layered laminate is depicted in Figure 4.6 and 4.7 and is defined as

\[
\begin{bmatrix}
N_x \\
N_y \\
N_{xy}
\end{bmatrix} = \int_{-t/2}^{t/2} \begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} dz = \sum_{k=1}^{N} \int_{z_{k-1}}^{z_k} \begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} dz
\]

(4.65)

and

\[
\begin{bmatrix}
M_x \\
M_y \\
M_{xy}
\end{bmatrix} = \int_{-t/2}^{t/2} z \begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} dz = \sum_{k=1}^{N} \int_{z_{k-1}}^{z_k} z \begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} dz
\]

(4.66)

where \(z_k\) and \(z_{k-1}\) are defined in the basic laminate geometry of Figure 4.8. Note there that the \(z_i\) are directed distances (coordinates) in accordance with the convention that \(z_i\) positive downward. That is, \(z_k\) is the directed distance to the bottom of the \(k^{th}\) layer, and \(z_{k-1}\) is the directed distance to the top of the \(k^{th}\) layer. Moreover, \(z_0 = -t/2\), \(z_i = -t/2 + t_i\), etc., whereas \(z_N = +t/2\), \(z_{N-1} = +t/2 - t_N\), etc. These force and moment resultant do not depend on \(z\) after integration, but are functions of \(x\) and \(y\), the coordinates in the plane of the laminate middle surface.
Equations (4.65) and (4.66) can be rearranged to take advantage of the fact that the stiffness matrix for a lamina is often constant within the lamina (unless the lamina has temperature-dependent or moisture-dependent properties and a temperature gradient or a moisture gradient exists across the lamina). If the elevated temperature or moisture is constant through the thickness of the lamina (a ‘soaked’ condition), then the values of \([Q_{ij}]_k\) are constant in the layer but probably degraded because of the temperature and/or moisture. Thus, the stiffness matrix goes outside the integration over each layer, but is within the summation of force and moment resultant for each layer. When the lamina stress-strain relations, Equation (4.63), are

\[
\begin{bmatrix}
N_x \\
N_y \\
N_{xy}
\end{bmatrix} = \sum_{k=1}^{N} \begin{bmatrix}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
\end{bmatrix} \begin{bmatrix}
\int_{z_{k-1}}^{z_k} [k_x] \, dz \\
\int_{z_{k-1}}^{z_k} [k_y] \, dz \\
\end{bmatrix} \begin{bmatrix}
\varepsilon^0_x \\
\varepsilon^0_y \\
\gamma^0_{xy}
\end{bmatrix} + \int_{z_{k-1}}^{z_k} \begin{bmatrix}
k_x \\
k_y
\end{bmatrix} z \, dz
\]

(4.67)

\[
\begin{bmatrix}
M_x \\
M_y \\
M_{xy}
\end{bmatrix} = \sum_{k=1}^{N} \begin{bmatrix}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
\end{bmatrix} \begin{bmatrix}
\int_{z_{k-1}}^{z_k} [k_x] \, dz \\
\int_{z_{k-1}}^{z_k} [k_y] \, dz \\
\end{bmatrix} \begin{bmatrix}
\varepsilon^0_x \\
\varepsilon^0_y \\
\gamma^0_{xy}
\end{bmatrix} + \int_{z_{k-1}}^{z_k} \begin{bmatrix}
k_x \\
k_y \\
k_{xy}
\end{bmatrix} z^2 \, dz
\]

(4.68)
Sometimes the stiffness matrix for a lamina, \([Q_{ijk}] \), is not constant though the thickness of the lamina. For example, if a temperature gradient or moisture gradient exists in the lamina and the lamina material properties are temperature dependent and/or moisture dependent, then \([Q_{ijk}] \) is a function of \(z \) and must be left inside the integral. In such cases, the laminate nonhomogeneous within each layer, so a more complicated numerical solution is required than is addressed here.

We should now recall that \(\varepsilon^0_x, \varepsilon^0_y, \gamma^0_{xy}, k_x, k_y, \) and \(k_{xy} \) are not functions of \(z \), but are middle-surface values so they can be removed from within the summation signs. Thus, Equations (4.67) and (4.68) can be written as

\[
\begin{align*}
\begin{bmatrix}
N_x \\
N_y \\
N_{xy}
\end{bmatrix}
&= \begin{bmatrix}
A_{11} & A_{12} & A_{16} \\
A_{12} & A_{22} & A_{26} \\
A_{16} & A_{26} & A_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon^0_x \\
\varepsilon^0_y \\
\gamma^0_{xy}
\end{bmatrix}
+ \begin{bmatrix}
B_{11} & B_{12} & B_{16} \\
B_{12} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{bmatrix}
\begin{bmatrix}
k_x \\
k_y \\
k_{xy}
\end{bmatrix}
\\
&= \epsilon + \gamma_k
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
M_x \\
M_y \\
M_{xy}
\end{bmatrix}
&= \begin{bmatrix}
B_{11} & B_{12} & B_{16} \\
B_{12} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon^0_x \\
\varepsilon^0_y \\
\gamma^0_{xy}
\end{bmatrix}
+ \begin{bmatrix}
D_{11} & D_{12} & D_{16} \\
D_{12} & D_{22} & D_{26} \\
D_{16} & D_{26} & D_{66}
\end{bmatrix}
\begin{bmatrix}
k_x \\
k_y \\
k_{xy}
\end{bmatrix}
\\
&= \epsilon + \gamma_k
\end{align*}
\] (4.69) (4.70)

where

\[
\begin{align*}
A_{ij} &= \sum_{k=1}^{N} \frac{Q_{ij}}{k} (z_k - z_{k-1}) \\
B_{ij} &= \frac{1}{2} \sum_{k=1}^{N} \frac{Q_{ij}}{k} (z^2_k - z^2_{k-1}) \\
D_{ij} &= \frac{1}{3} \sum_{k=1}^{N} \frac{Q_{ij}}{k} (z^3_k - z^3_{k-1})
\end{align*}
\] (4.71)
5.1 Overview of Pressure Vessels

5.1.1 Introduction

Vessels, tanks, and pipelines that carry, store, or receive fluids are called pressure vessels. A pressure vessel is defined as a container with a pressure differential between inside and outside. The inside pressure is usually higher than the outside, except for some isolated situations. The fluid inside the vessel may undergo a change in state as in the case of steam boilers, or may combine with other reagents as in the case of a chemical reactor. Pressure vessels often have a combination of high pressures together with high temperatures, and in some cases flammable fluids or highly radioactive materials. Because of such hazards it is imperative that the design be such that no leakage can occur. In addition these vessels have to be designed carefully to cope with the operating temperature and pressure. It should be borne in mind that the rupture of a pressure vessel has a potential to cause extensive physical injury and property damage. Plant safety and integrity are of fundamental concern in pressure vessel design and these of course depend on the adequacy of design codes.

When discussing pressure vessels we must also consider tanks. Pressure vessels and tanks are significantly different in both design and construction: tanks, unlike pressure vessels, are limited to atmospheric pressure; and pressure vessels often have internals while most tanks do not (and those that do are limited to heating coils or mixers).

Pressure vessels are used in a number of industries; for example, the power generation industry for fossil and nuclear power, the petrochemical industry for storing and processing crude petroleum oil in tank farms as well as storing gasoline in service stations, and the chemical industry (in chemical reactors) to
name but a few. Their use has expanded throughout the world. Pressure vessels and tanks are, in fact, essential to the chemical, petroleum, petrochemical and nuclear industries. It is in this class of equipment that the reactions, separations, and storage of raw materials occur. Generally speaking, pressurized equipment is required for a wide range of industrial plant for storage and manufacturing purposes.

The size and geometric form of pressure vessels vary greatly from the large cylindrical vessels used for high-pressure gas storage to the small size used as hydraulic units for aircraft. Some are buried in the ground or deep in the ocean, but most are positioned on ground or supported in platforms. Pressure vessels are usually spherical or cylindrical, with domed ends. The cylindrical vessels are generally preferred, since they present simpler manufacturing problems and make better use of the available space. Boiler drums, heat exchangers, chemical reactors, and so on, are generally cylindrical. Spherical vessels have the advantage of requiring thinner walls for a given pressure and diameter than the equivalent cylinder. Therefore they are used for large gas or liquid containers, gas-cooled nuclear reactors, containment buildings for nuclear plant, and so on. Containment vessels for liquids at very low pressures are sometimes in the form of lobed spheroids or in the shape of a drop. This has the advantage of providing the best possible stress distribution when the tank is full.

5.2 Design of Pressure Vessels

5.2.1 Thin-shell Equations

A shell is a curved plate-type structure. We shall limit our discussion to shells of revolutions. Referring to Figure 5.1 this is denoted by an angle φ, the meridional radius r_1 and the conical radius r_2, from the centre line. The horizontal radius when the axis is vertical is r.
If the shell thickness is t, with z being the coordinate across the thickness, following the convention of Flugge, we have the following stress resultants:

\[
N_\theta = \int_{-t/2}^{t/2} \sigma_\theta \left(\frac{r_1 + z}{r_1} \right) dz \tag{5.1}
\]

\[
N_\phi = \int_{-t/2}^{t/2} \sigma_\phi \left(\frac{r_2 + z}{r_2} \right) dz \tag{5.2}
\]

\[
N_{\theta\phi} = \int_{-t/2}^{t/2} \sigma_{\theta\phi} \left(\frac{r_1 + z}{r_1} \right) dz \tag{5.3}
\]

Figure 5.1 Thin shell of revolution.

\[
N_{\phi\theta} = \int_{-t/2}^{t/2} \sigma_{\phi\theta} \left(\frac{r_2 + z}{r_2} \right) dz
\]

\[
N_{\theta\phi} = \int_{-t/2}^{t/2} \frac{\partial N_{\theta\phi}}{\partial \phi} d\phi + \int_{-t/2}^{t/2} \frac{\partial N_{\theta\phi}}{\partial \theta} d\theta
\]

\[
N_{\phi\theta} = \int_{-t/2}^{t/2} \frac{\partial N_{\phi\theta}}{\partial \phi} d\phi + \int_{-t/2}^{t/2} \frac{\partial N_{\phi\theta}}{\partial \theta} d\theta
\]

\[
N_{\phi\theta} = \int_{-t/2}^{t/2} \frac{\partial N_{\phi\theta}}{\partial \phi} d\phi + \int_{-t/2}^{t/2} \frac{\partial N_{\phi\theta}}{\partial \theta} d\theta
\]

\[
N_{\phi\theta} = \int_{-t/2}^{t/2} \frac{\partial N_{\phi\theta}}{\partial \phi} d\phi + \int_{-t/2}^{t/2} \frac{\partial N_{\phi\theta}}{\partial \theta} d\theta
\]
These stress resultants are assumed to be due only to an internal pressure, p, acting in the direction of r. For membrane shells where the effects of bending can be ignored, all the moments are zero and further development leads to

$$N_{\phi} = N_{\phi \theta} \tag{5.5}$$

The following equations result from considering force equilibrium along with the additional requirement of rotational symmetry:

$$\frac{d(rN_{\phi})}{d\phi} - r_1 N_{\phi} \cos \phi = 0 \tag{5.6}$$

$$N_{\phi} = pr_2 - \frac{r_2}{r_1} N_{\theta} \tag{5.7}$$

Nothing that $r = r_2 \sin \phi$, we have by solving Equations (5.6) and (5.7),

$$N_{\theta} = \frac{pr_2}{2} \tag{5.8}$$

$$N_{\theta} = pr_2 (2 - \frac{r_2}{r_1}) \tag{5.9}$$

The above two equations are the results for a general shell of revolution. Two specific cases result:

1. For a spherical shell of radius R, $r_1 = r_2 = R$, which gives

$$N_{\theta} = N_{\theta} = \frac{pR}{2} \tag{5.10}$$

2. For a cylindrical pressure vessel of radius R, we have $r_1 = \infty$, $r_2 = R$, which gives

$$N_{\theta} = \frac{pR}{2} \tag{5.11}$$
\begin{equation}
N_0 = pR
\end{equation}

This gives the hoop stress

\begin{equation}
\sigma_{\text{hoop}} = \sigma_\theta = \frac{N_0}{t} = \frac{pR}{t}
\end{equation}

and the longitudinal stress

\begin{equation}
\sigma_{\text{long}} = \sigma_\phi = \frac{N_0}{2t} = \frac{pR}{2t}
\end{equation}

These results will be shown to be identical to the results that follow. Let us consider a long thin cylindrical shell of radius \(R\) and thickness \(t\), subject to an internal pressure \(p\). By thin shells we mean the ones having the ratio \(R/t\) typically greater than about 10. If the ends of the cylindrical shell are closed, there will be stresses in the hoop as well as the axial (longitudinal) directions.

A section of such a shell is shown in Figure 5.2. The hoop (circumferential) stress, \(\sigma_{\text{hoop}}\) and the longitudinal stress, \(\sigma_{\text{long}}\) are indicated in the figure. The shell is assumed to be long and thin resulting in \(\sigma_{\text{hoop}}\) and \(\sigma_{\text{long}}\) to be uniform through the thickness. Therefore in this case \(\sigma_{\text{hoop}}\) and \(\sigma_{\text{long}}\) are also referred to as membrane stress (there are no bending stresses associated with this type of loading).

Considering equilibrium across the cut section, we have,

\[pL(2R) = 2\sigma_{\text{hoop}}tL\]

which gives

\begin{equation}
\sigma_{\text{hoop}} = \frac{pR}{t}
\end{equation}
Considering a cross-section of the shell perpendicular to its axis, we have

\[p\pi r^2 = \sigma_{\text{long}} (2\pi R t) \]

which gives

\[\sigma_{\text{long}} = \frac{pR}{2t} \] \hspace{1cm} (5.16)

5.2.2 Thick-shell Equations

For \(R/t \) ratios typically less than 10, Equations (5.15) and (5.16) tend not to be accurate, and thick-shell equations have to be used.

Consider a thick cylindrical shell of inside radius \(R_i \) and outside radius \(R_o \) subjected to an internal pressure \(p \) as shown in Figure 5.3.
The stress function for this case is given as a function of radius r as

\[\phi = A \ln r + Br^2 \] \hspace{1cm} (5.17)

with A and B to be determined by the boundary conditions.

If we indicate the radial stress as \(\sigma_{\text{rad}} \) and the hoop and longitudinal stress as indicated previously by \(\sigma_{\text{hoop}} \) and \(\sigma_{\text{long}} \), we have

\[\sigma_{\text{rad}} = \frac{1}{r} \frac{d\phi}{dr} = \frac{A}{r^2} + 2B \] \hspace{1cm} (5.18)

\[\sigma_{\text{hoop}} = \frac{d^2\phi}{dr^2} = -\frac{A}{r^2} + 2B \] \hspace{1cm} (5.19)

The constants A and B are determined from the following boundary conditions:

\[\sigma_{\text{rad}} = -p \quad \text{at} \quad r=R_1, \]
\[\sigma_{\text{rad}} = 0 \quad \text{at} \quad r=R_0 \] \hspace{1cm} (5.20)
Substituting (5.20) into (5.18) and (5.19), we have

\[A = -\frac{R_i^2 R_0^2 p}{(R_0^2 - R_i^2)} \]

\[B = \frac{R_i^2 p}{2(R_0^2 - R_i^2)} \] \hspace{1cm} (5.21)

Denoting the ratio of the outside to inside radii as \(m \), so that \(m = R_0/R_i \), we obtain the radial and hoop stresses

\[\sigma_{\text{rad}} = \frac{p}{(m^2 - 1)} \left[1 - \frac{R_0^2}{r^2} \right] \] \hspace{1cm} (5.22)

\[\sigma_{\text{hoop}} = \frac{p}{(m^2 - 1)} \left[1 + \frac{R_0^2}{r^2} \right] \] \hspace{1cm} (5.23)

Figure 5.4 shows the radial and hoop stress distributions.

Figure 5.4 Hoop and radial stress distribution.
The longitudinal stress, σ_{long}, is determined by considering the equilibrium of forces across a plane normal to the axis of the shell, which gives

$$p\pi R_i^2 = \sigma_{\text{long}} \pi (R_0^2 - R_i^2)$$ \hspace{1cm} (5.24)

This is of course based on the assumption that the longitudinal stress is a form of membrane stress in that there is no variation across the thickness of the shell. Thus we have

$$\sigma_{\text{long}} = \frac{pR_i^2}{(R_0^2 - R_i^2)} = \frac{p}{(m^2 - 1)}$$ \hspace{1cm} (5.25)

It should be noted however that the solutions indicated by Equations (5.22), (5.23), and (5.25) are valid for regions remote from discontinuities.

5.3 Stress Analysis of Composite Pressure Vessels

Properties of composite materials, as well as properties of all structural materials are affected by environmental and operational conditions. Moreover, for polymeric composites this influence is more pronounced than for conventional metal alloys because polymers are more sensitive to temperature, moisture, and time than metals. There exists also a specific feature of composites associated with the fact that they do not exist apart from composite structures and are formed while these structures are fabricated. As a result, material characteristics depend on the type and parameters of the manufacturing process, e.g., unidirectional composites made by pultrusion, hand lay-up, and filament winding can demonstrate different properties.

This section of the research is concerned with the effect of environmental, with hygrothermal loading on mechanical properties and behaviour of composites. A general hygrothermal stress analysis is presented in the multi-layered thin or thick composite cylinders for the axially symmetric case under
uniform temperature distributions. The solution is carried out for closed end conditions. The stacking sequences are chosen as $[45^\circ/-45^\circ]_s$, $[55^\circ/-55^\circ]_s$, $[60^\circ/-60^\circ]_s$, $[75^\circ/-75^\circ]_s$, and $[88^\circ/-88^\circ]_s$ for both symmetric and antisymmetric orientations.

5.3.1 Internal Pressure with Hygrothermal Loading

A composite pressure vessel is shown in Figure 5.5. r, θ, z are the radial, tangential and axial directions. The solution is based on the Lekhnitkii’s theory. In this theory, it is assumed that a body in the form of a hollow circular cylinder with an axis of anisotropy coincides with the geometrical axis of the cylinder.

$$
\begin{bmatrix}
\epsilon_r \\
\epsilon_\theta \\
\epsilon_z \\
\gamma_{r\theta} \\
\gamma_{\theta r} \\
\gamma_{r\theta}
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\
a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66}
\end{bmatrix}
\begin{bmatrix}
\sigma_r \\
\sigma_\theta \\
\sigma_z \\
\tau_{r\theta} \\
\tau_{\theta r} \\
\tau_{r\theta}
\end{bmatrix}
$$

(5.26)
For an axially symmetric case, the shear stresses $\tau_{\theta z}$ and τ_{rz} are equal to zero. τ_{0z} is also equal to zero because there is no twisting moment applied to the cylinder. The stress-strain relation for the axially symmetric case, as shown in Figure 5.6, can be written as,

In this case, the strain-stress relations in a composite vessel can be written in terms of the compliance matrix;

$$
\varepsilon_z = a_{zz} \sigma_z + a_{z0} \sigma_0 + a_{rz} \sigma_z + \alpha_z T + \beta_z c
$$

$$
\varepsilon_0 = a_{0z} \sigma_z + a_{00} \sigma_0 + a_{0r} \sigma_z + \alpha_0 T + \beta_0 c
$$

$$
\varepsilon_r = a_{rr} \sigma_r + a_{0r} \sigma_0 + a_{rr} \sigma_z + \alpha_r T + \beta_r c
$$

where $\alpha_z, \alpha_0, \alpha_r$ are the thermal expansion coefficients and $\beta_r, \beta_0, \beta_z$ and c are hygroscopic expansion coefficients and moisture concentration.

The hygrothermal stresses are obtained by using a parameter, C

$$
\varepsilon_z = a_{rr} \sigma_r + a_{0r} \sigma_0 + a_{z0} \sigma_z + \alpha_z T + \beta_z c = C
$$

$$
\sigma_z = \frac{C}{a_{zz}} \cdot \frac{a_{zz}}{a_{zz}} \sigma_z \cdot \frac{a_{zz}}{a_{zz}} \sigma_0 \cdot \frac{\alpha_z}{a_{zz}} \cdot \frac{\beta_z}{c} \cdot c
$$

(5.28)
When \(\sigma_z \) substituted into relations is \(\varepsilon_r \) and \(\varepsilon_\theta \) becomes as,

\[
\varepsilon_r = \frac{1}{r} \frac{\partial u}{\partial \theta} = \beta_r \sigma_r + \beta_{\theta r} \sigma_\theta + \bar{\alpha}_r T + \bar{\beta}_r c + a_{rz} \frac{C}{a_{zz}}, \\
\varepsilon_\theta = \frac{1}{r} \frac{u}{\partial \theta} = \beta_{\theta r} \sigma_r + \beta_{\theta \theta} \sigma_\theta + \bar{\alpha}_\theta T + \bar{\beta}_\theta c + a_{\theta z} \frac{C}{a_{zz}}
\]

(5.29)

where

\[
\beta_r = a_{rr} - \frac{a_{r z}^2}{a_{zz}}, \quad \beta_{\theta r} = a_{\theta r} - \frac{a_{\theta z} a_{r z}}{a_{zz}}, \quad \beta_{\theta \theta} = a_{\theta \theta} - \frac{a_{\theta z}^2}{a_{zz}}, \\
\bar{\alpha}_r = a_{rz}, \quad \bar{\beta}_r = \beta_r - \frac{\beta_{r z}}{a_{zz}}, \quad \beta_{\theta r} = \frac{a_{\theta r} - a_{\theta z}}{a_{zz}} \quad \beta_{\theta \theta} = \frac{a_{\theta \theta} - a_{\theta z}}{a_{zz}}
\]

(5.30)

\(\beta \) coefficient of hygroscopic expansion

\(c \) moisture concentration

A stress function (F) under the Lekhnitskii’s theory can be written as

\[
\sigma_r = -\frac{1}{r} \frac{\partial F}{\partial r} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2} = -\frac{1}{r} \frac{\partial F}{\partial r}, \quad \sigma_\theta = \frac{\partial^2 F}{\partial r^2}
\]

(5.31)

Writing \(\varepsilon_r = \frac{\partial u}{\partial r} \) and \(\varepsilon_\theta = \frac{u}{r} \) for an axially symmetric case gives the compatibility equation. By differentiating \(u = r \varepsilon_\theta \) with respect to \(r \), the compatibility equation is obtained as following,

\[
\frac{du}{dr} = \varepsilon_\theta + r \frac{de_\theta}{dr}
\]

then,

\[
\varepsilon_r = \varepsilon_\theta + r \frac{de_\theta}{dr}
\]

(5.32)
When the compatibility equation is used between \(\varepsilon_r \) and \(\varepsilon_\theta \), an ordinary differential equation is obtained for the stress function \(F \) as,

\[
r^3 \beta_{r0} \frac{d^3 F}{dr^3} + r^2 \beta_{\theta 0} \frac{d^2 F}{dr^2} - r \beta_n \frac{dF}{dr} = Tr^2 (\alpha_r - \alpha_0) + cr^2 (\beta_r - \beta_0) - \alpha_{\alpha r} r^3 \frac{dT}{dr} + Cr^2 \beta_d \quad (5.33)
\]

\[
r^3 \frac{d^3 F}{dr^3} + r^2 \frac{d^2 F}{dr^2} = Tr^2 \alpha'_r + cr^2 \beta'_r - \alpha_{\alpha r} r^3 \frac{dT}{dr} + Cr^2 \beta_d \quad (5.34)
\]

where \(\frac{\beta_n}{\beta_{\theta 0}} = k^2 \), \((\alpha_r - \alpha_0) = \alpha'_r \), \((\beta_r - \beta_0) = \beta'_r \)

The Eq. (5.34) is solved by using the transformation of \(F = r^\alpha \). Uniform temperature distribution is chosen in the solution and we have

\[
\frac{dT}{dr} = \alpha r^{\alpha - 1}, \quad \frac{d^2 F}{dr^2} = \alpha (\alpha - 1) r^{\alpha - 2}, \quad \frac{d^3 F}{dr^3} = \alpha (\alpha - 1) (\alpha - 2) r^{\alpha - 3} \quad (5.35)
\]

Put Eq. (5.35) into Eq. (5.34) we get characteristic equation

\[
r^\alpha \alpha (\alpha - 1)(\alpha - 2) + r^\alpha \alpha (\alpha - 1) - r^\alpha k^2 \alpha = 0
\]

\[
r^\alpha [\alpha (\alpha - 1)(\alpha - 2) + \alpha (\alpha - 1) - k^2 \alpha] = 0 \quad (5.36)
\]

Here \(r^\alpha \neq 0 \), \(k^2 \neq 0 \) and

\[
\alpha [\alpha (\alpha - 1)(\alpha - 2) + (\alpha - 1) - k^2] = 0
\]

\[
\alpha (\alpha^2 - 2\alpha + 1 - k^2) = 0 \quad (5.37)
\]

Roots of Eq. (5.37) are found

\[
\alpha_1 = 0
\]
\[
\alpha_2 = 1 + k
\]
\[
\alpha_3 = 1 - k \quad (5.38)
\]
So we get homogeneous solution of differential problem

\[F_h = C_0 r^{a_1} + C_1 r^{a_2} + C_2 r^{a_1} \]
\[F_h = C_0 + C_1 r^{i+k} + C_2 r^{i-k} \] \hspace{1cm} (5.39)

We must have a particular solution \(F_p \) for the exact solution of \(F \) function.

\[F = F_p + F_h \] \hspace{1cm} (5.40)

\[F_p = A r^3 + B r^2 + C r + D \] \hspace{1cm} (5.41)

Derivatives of Eq. (5.41)

\[F_p' = 3A r^2 + 2B r + C \]
\[F_p'' = 6A r + 2B \] \hspace{1cm} (5.42)

\[F_p''' = 6A \]

Put Eq.(5.42) into Eq.(5.34) we have

\[r^3 (12A - 3Ak^2) + r^2 (2B - 2Bk^2) + r(-Ck^2) = Tr^2 \alpha'_r + cr^2 \beta'_r - \alpha_{\theta} r^3 \frac{dT}{dr} + Cr^2 \beta_d \]
\[r^3 (12A - 3Ak^2) + r^2 (2B - 2Bk^2) + r(-Ck^2) = r^3 (\frac{dT}{dr}) + r^2 (T \alpha'_r + cr\beta'_r + C\beta_d) \] \hspace{1cm} (5.43)

where \(T = \frac{dT}{dr} = 0 \) (uniform temperature distribution) and unknown parameters are found as,

\[A = 0 \]
\[C = 0 \] \hspace{1cm} (5.44)

\[B = \frac{T \alpha'_r + cr\beta'_r + C\beta_d}{2(1-k^2)} \]
\[\frac{\beta_r}{\beta_{00}} = k^2, \quad \bar{\alpha}_r - \bar{\alpha}_0 = \alpha'_r, \quad \bar{\beta}_r - \bar{\beta}_0 = \beta'_r \]

where \(\beta_r = a_n - \frac{a_{zz}}{a_{zz}}, \quad \beta_{00} = a_{00} - \frac{a_{0zz}}{a_{zz}}, \quad \bar{\beta}_r = \beta_r - \frac{\beta_{zz} a_{zz}}{a_{zz}} \)

\[\bar{\alpha}_r = \alpha_r - \frac{a_{zz} a_{zz}}{a_{zz}}, \quad \bar{\alpha}_0 = \alpha_0 - \frac{a_{zz} a_{zz}}{a_{zz}}, \quad \bar{\beta}_0 = \beta_0 - \frac{\beta_{zz} a_{zz}}{a_{zz}} \]

Put Eq. (5.44) into Eq. (5.41) we will have the particular solution

\[F_p = \frac{T \alpha'_r + c r \beta'_r + C \beta_{dd}}{2(1-k^2)} r^2 \tag{5.45} \]

Put Eq. (5.45) and Eq. (5.39) into Eq. (5.40) the stress function \(F \) is obtained as,

\[F = C_0 + C_1 r^{1+k} + C_2 r^{1-k} + \frac{T \alpha'_r + c r \beta'_r + C \beta_{dd}}{2(1-k^2)} r^2 \tag{5.46} \]

The stress components are obtained as,

\[\sigma_r = \frac{1}{r} \frac{dF}{dr} = (1+k)C_1 r^{k-1} + (1-k)C_2 r^{-k-1} + \frac{T \alpha'_r + c r \beta'_r + C \beta_{dd}}{(1-k^2)} \]

\[\sigma_0 = \frac{d^2F}{dr^2} = k(1+k)C_1 r^{k-1} - k(1-k)C_2 r^{-k-1} + \frac{T \alpha'_r + c r \beta'_r + C \beta_{dd}}{(1-k^2)} \]

\[\sigma_z = -\frac{C}{a_{zz}} \frac{a_{zz} + k a_{0zz}}{a_{zz}} (1+k)C_1 r^{k-1} + \frac{a_{zz} + k a_{0zz}}{a_{zz}} (1-k)C_2 r^{-k-1} \]

\[-2A \frac{a_{zz} + a_{0zz}}{a_{zz}} - \frac{\alpha_z}{a_{zz}} T_0 \frac{\beta_z}{a_{zz}} \]

Radial displacement is obtained from the relation \(\varepsilon_0 = \frac{u}{r} \) then \(u \) is written as,

\[u = (\beta_{r0} + k \beta_{00})(1+k)C_1 r^k + (\beta_{r0} - k \beta_{00})(1-k) r^{-k} \]

\[+ 2(\beta_{r0} + \beta_{00}) A r + \alpha_0 T_0 r + \bar{\beta}_0 c r + \frac{a_{zz} + a_{0zz}}{a_{zz}} C r \tag{5.48} \]

\[\alpha_r = \frac{1}{r} \frac{dF}{dr} = (1+k)C_1 r^{k-1} + (1-k)C_2 r^{-k-1} + \frac{T \alpha'_r + c r \beta'_r + C \beta_{dd}}{(1-k^2)} \]

\[\sigma_0 = \frac{d^2F}{dr^2} = k(1+k)C_1 r^{k-1} - k(1-k)C_2 r^{-k-1} + \frac{T \alpha'_r + c r \beta'_r + C \beta_{dd}}{(1-k^2)} \]

\[\sigma_z = -\frac{C}{a_{zz}} \frac{a_{zz} + k a_{0zz}}{a_{zz}} (1+k)C_1 r^{k-1} + \frac{a_{zz} + k a_{0zz}}{a_{zz}} (1-k)C_2 r^{-k-1} \]

\[-2A \frac{a_{zz} + a_{0zz}}{a_{zz}} - \frac{\alpha_z}{a_{zz}} T_0 \frac{\beta_z}{a_{zz}} \]

Radial displacement is obtained from the relation \(\varepsilon_0 = \frac{u}{r} \) then \(u \) is written as,

\[u = (\beta_{r0} + k \beta_{00})(1+k)C_1 r^k + (\beta_{r0} - k \beta_{00})(1-k) r^{-k} \]

\[+ 2(\beta_{r0} + \beta_{00}) A r + \alpha_0 T_0 r + \bar{\beta}_0 c r + \frac{a_{zz} + a_{0zz}}{a_{zz}} C r \tag{5.48} \]
The integration constants obtained in this solution for each layer are \(C_1 \) and \(C_2 \). If the total number of layers is \(n \), the total number of the unknown integration constants is \(2xn \).

They are calculated by using the boundary conditions. If the vessel is subjected to internal pressure at the inner surface is free at the outer surface, the boundary conditions are written as,

\[
\sigma_r = -p \text{ at the inner surface, } r = a \\
\sigma_r = 0 \text{ at the outer surface, } r = b
\]

(5.49)

where \(a \) and \(b \) are the inner and outer radii of the composite vessel. However, the number of boundary conditions can be written is \((2 \times n) - 2 \). The radial stress \((\sigma_r) \) and radial displacement \((u) \) are in the direction of the normal of layers. They must be equal in neighboring layers, to ensure continuity of the layers. As a results of this, the radial stresses and displacements are written to be equal in neighboring layers as following,

\[
(\sigma_r)_{i-1} = (\sigma_r)_i \\
(u)_{i-1} = (u)_i
\]

(5.50)

where \(i \) stands for the number of layer considered. Thus, \((2 \times n) - 2 \) more relations can be written and then all integration constants can be calculated. In this solution, they are written in matrix form. The unknown constants are obtained by using Jordan method.

The resultant of \(\sigma_z \) at any cross section is equal to the total axial force at the ends of the vessel. That is,

\[
P_z = \pi \alpha^2 p = \int_{r=a}^{b} 2 \pi r \sigma_z dr
\]

(5.51)

where \(p \) is the internal pressure. The parameter \(C \) can be found by using the previous Eq. (5.51). Iteration methods are used in order to calculate \(C \), then all the stress
components are obtained.

Figure 5.7 A composite cylinder with four layers.

5.4 Failure Analysis

A lamina is assumed to be homogeneous and the mechanical behaviour is characterized by a set of equivalent or effective moduli and strength properties. These properties can be obtained either by a micro-mechanics approach or by a phenomenological approach. In the micro-mechanics approach, the lamina properties are predicted in terms of the constituent (fiber, matrix) properties by using a mathematical model; in the phenomenological approach, the lamina properties are determined experimentally by conducting tests on a single lamina or a laminate. In this research, lamina properties were determined by a phenomenological approach (Section 6.2).

Once the mechanical properties of the ply are known the initial failure of the ply within a laminate or structure can be predicted by applying an appropriate failure criterion. Failure types are dependent on loading, stacking sequence, and specimen geometry. There are many proposed theories to predict the one-set of
failures. Most of failure criteria are based on the stress state in a lamina. Hence, an accurate kinematic model of the laminate is necessary to determine three-dimensional stress/strain fields. Ideally speaking, a 3-D or layerwise model is desirable. The failure criteria, for example, the quadratic polynomial criteria consist of parameters that must be experimentally determined. Often, these parameters are difficult to determine with certainty.

To analyze the strength of any laminated composite, strength theories are required. Failure analysis is a tool for predicting the strength of a laminated composite, containing several plies with different orientations, under complex loading conditions using strength data obtained from uniaxial tests of unidirectional plies and strength theories. There are numerous failure criteria for composite materials as a direct result of the complex nature of observed failure phenomena. These criteria are only useful if they can be incorporated into a progressive damage analysis, which usually means that they must be compatible with a finite element formulation.

Different types of failure criteria have been used for failure design of composite laminates. In general, the failure criteria are categorized into two: independent and interactive (or quadratic polynomial) criteria. An independent criterion, such as maximum stress or maximum strain, is simple to apply and more significantly, tells the mode of failure, but it neglects the effect of stress interactions. For this reason, these criteria are quite conservative. An interactive criterion, such as Tsai-Wu, Tsai-Hill, Hoffmann includes stress interactions in the failure mechanism and predicts first ply failure but it requires some efforts to determine parameters.

The first-ply failure analysis of the laminated composite pressure vessel is performed via the use of a suitable failure criterion. Determination of first-ply failure pressure loads of laminated pressure vessels based on Tsai-Wu failure criteria has been used.
5.4.1 Tsai-Wu Failure Theory

Under plane stress conditions, the Tsai-Wu failure theory predicts failure in an orthotropic lamina if and when the following equality is satisfied:

\[
F_1\sigma_{11} + F_2\sigma_{22} + F_6\tau_{12} + F_{11}\sigma_{11}^2 + F_{22}\sigma_{22}^2 + F_{66}\tau_{12}^2 + 2F_{12}\sigma_{11}\sigma_{22} = 1
\]

We consider the plane stress condition of a general orthotropic lamina containing unidirectional fibers at a fiber orientation angle of \(\theta\) with respect to the \(x\) axis Figure 5.8. Four independent elastic constants, namely, \(E_{11}, E_{22}, G_{12}\), and \(\nu_{12}\) and required to define its elastic characteristics. Its strength properties are characterized by five independent strength properties:

\[\begin{align*}
X_t &= \text{longitudinal tensile strength} \\
Y_t &= \text{transverse tensile strength} \\
X_c &= \text{longitudinal compressive strength} \\
Y_c &= \text{transverse compressive strength} \\
S &= \text{in-plane (interlaminar) shear strength}
\end{align*}\]

Figure 5.8 General stress states in a thin orthotropic lamina.

Where \(F_1, F_2,\) and so on are called the strength coefficients and are given by,
\[
F_1 = \frac{1}{X_i} - \frac{1}{X_c} \quad F_2 = \frac{1}{Y_i} - \frac{1}{Y_c} \quad F_6 = 0
\]

\[
F_{11} = -\frac{1}{X_i X_c} \quad F_{22} = -\frac{1}{Y_i Y_c} \quad F_{66} = -\frac{1}{S^2}
\]

and \(F_{12} \) is a strength interaction term between \(\sigma_{11} \) and \(\sigma_{22} \). Note that \(F_1, F_2, F_{11}, F_{22} \) and \(F_{66} \) can be calculated using the tensile, compressive, and shear strength properties in the principal material directions. Determination of \(F_{12} \) requires a suitable biaxial test. For a simple example, consider an equal biaxial tension test in which \(\sigma_{11} = \sigma_{22} = \sigma \) at failure. Using Eq. (5.52), we can write

\[
(F_1 + F_2)\sigma + (F_{11} + F_{22} + 2F_{12})\sigma^2 = 1
\]

from which

\[
F_{12} = \frac{1}{2\sigma^2} \left[1 - \left(\frac{1}{X_i} + \frac{1}{X_c} + \frac{1}{Y_i} + \frac{1}{Y_c} \right) \sigma + \left(\frac{1}{X_i X_c} + \frac{1}{Y_i Y_c} \right) \sigma^2 \right]
\]

since reliable biaxial tests are not always easy to perform, an approximate range of values for \(F_{12} \) has been recommended,

\[
-\frac{1}{2}(F_{11}F_{22})^{1/2} \leq F_{12} \leq 0 \quad (5.53)
\]

In absence of experimental data, the lower limit of Eq. (5.53) is frequently used for \(F_{12} \).
5.5 Finite Element Approach

In this chapter, by using ANSYS 10.0 finite element analysis software, a static failure analysis was performed on an element of a composite pressure vessel in Figure 5.10.

According to thin-walled assumptions the stress of the pressure vessel subjected to internal pressure p can be given as

$$
\sigma_{\text{loop}} = \frac{pR}{t} \\
\sigma_{\text{long}} = \frac{pR}{2t}
$$

Equation (5.54) was mentioned in section (5.2.1).

In addition, parametric studies have been performed using various orientation angles. The first failure pressure was studied on this solution method.

5.5.1 Three-Dimensional Finite Element Method

In the three-dimensional finite element formulation, the displacements, traction components, and distributed body force values are the functions of the position indicated by (x, y, z). The displacement vector u is given as

$$
u = [u, v, w]^T
$$

where u, v and w are x, y and z components of u, respectively. The stress and strains are given

$$
\sigma = \begin{bmatrix} \sigma_{xx}, \sigma_{xy}, \sigma_{xz}, \sigma_{yx}, \sigma_{yy}, \sigma_{yz}, \sigma_{zx}, \sigma_{zy}, \sigma_{zz} \end{bmatrix}^T
$$

$$
\varepsilon = \begin{bmatrix} \varepsilon_{xx}, \varepsilon_{xy}, \varepsilon_{xz}, \gamma_{yx}, \gamma_{yy}, \gamma_{yz}, \gamma_{zx}, \gamma_{zy}, \gamma_{zz} \end{bmatrix}^T
$$

(5.56)
From Figure 5.9, representing the Three-dimensional problem in a general setting, the body force and traction vector are given by

\[
\mathbf{f} = [f_x, f_y, f_z]^T, \quad \mathbf{T} = [T_x, T_y, T_z]^T
\]

(5.57)

The body force \(\mathbf{f}\) has dimensions of force per unit volume, while the traction force \(\mathbf{T}\) has dimensions of force per unit area.

5.5.2 Modelling of the Pressure Vessel

In this study, maximum failure pressure value was found by finite element analysis using ANSYS. In order to model the problem, a small element was taken from on the pressure vessel which is shown in Figure 5.10. This element was modelled using ANSYS and some operation was done respectively in the below.
Figure 5.10 Element of a composite pressure vessel.

First element type was defined with solid layered 46 in Figure 5.11. Solid46 is a layered version of the 8-node structural solid element designed to model layered thick shells or solids. The element allows up to 250 different material layers. The element may also be stacked as an alternative approach. The element has three degrees of freedom at each node: translations in the nodal x, y, and z directions.

Real constant sets were defined for 4 layers, various orientation angles and each layers thickness was entered 0.4 mm Figure 5.12.
After material properties was defined, linear orthotropic material was chosen and the mechanical properties of E-glass/epoxy composite material was added as E_X, E_Y, E_Z, PR_{XY}, PR_{YZ}, PR_{XZ}, G_{XY}, G_{YZ} and G_{XZ}.

In order to calculate failure criteria, ultimate tensile strength, compressive strength and shear strength were entered both in fiber direction and in matrix direction.

Then a volume block was modelled and material properties, real constant sets and element type were appointed to the volume. After that the model was meshed by using hexahedral swept elements Figure 5.13.
Boundary conditions were defined to corresponding to each side surfaces by using loads→pressure on areas functions as shown in Figure 5.14.

Then analysis was run and the solutions were observed with plot results→nodal solutions→failure criteria→Tsai-Wu strength index. Failure criteria value was made equal to 1 by changed boundary conditions pressure value. Then this pressure values was substituted as a stresses in Eq. (5.15) or Eq. (5.16) to calculate burst pressure of the composite pressure vessel.
CHAPTER SIX
EXPERIMENTAL STUDY

6.1 Production of Composite Pressure Vessels

In this study, filament wound GRP pipes were manufactured using a CNC winding machine with several winding angles. Roving E-glass–fiber with 600 Tex and 17 µm diameter was used as reinforcement. The matrix material was used Ciba Geigy Bisphenol an Epoxy CY-225 resin. The hardener material was used Ciba Geigy Anhydride HY-225. Mechanical properties of these matrix and reinforcement materials are given in Table 6.1. Before winding operation, resin was mixed for 4 – 5 min at 40°C resulting in an appropriate viscosity with a 4-h gel time. The filament wound composite pressure vessels were produced at the filament winding facilities of Izoreel Composite Insulating Materials Ltd., Izmir, Turkey. The fibers were wetted by passing through a resin bath for impregnation just before they were wound onto the mandrel. Helical winding was used for the desired angles of \([45°/-45°]_s\), \([55°/-55°]_s\), \([60°/-60°]_s\), \([75°/-75°]_s\), and \([88°/-88°]_s\), which are symmetrical and antisymmetrical. Components were cured first at 160 °C for 2 h and at 140 °C for another 2 h. Then, the filament wound specimens were cut down to specified test length using a diamond wheel saw. The geometry of the specimen is shown in Figure 6.1. Four layers of reinforcement provided the thickness of 1.6 mm. The layers were oriented symmetrically and antisymmetrically which are shown in Table 6.2. The length and the inner diameter of the test specimens were 400 and 100 mm, respectively.

<table>
<thead>
<tr>
<th>Table 6.1 Mechanical properties of the fiber and resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(GPa)</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>E-glass</td>
</tr>
<tr>
<td>Epoxy resin</td>
</tr>
</tbody>
</table>
Figure 6.1 Geometry of the specimen.

$L = 400 \text{ mm}$
$D = 110 \text{ mm}$
$a = 20 \text{ mm}$
$b = 6 \text{ mm}$
$c = 15 \text{ mm}$
$d = 100 \text{ mm}$
$e = 60 \text{ mm}$
$t = 1.6 \text{ mm}$

$\phi = \text{winding angle}$

Table 6.2 Stacking sequences of specimens.

<table>
<thead>
<tr>
<th>Type</th>
<th>Ply angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[+45/-45/-45/+45]</td>
</tr>
<tr>
<td>B</td>
<td>[+55/-55/-55/+55]</td>
</tr>
<tr>
<td>C</td>
<td>[+60/-60/-60/+60]</td>
</tr>
<tr>
<td>D</td>
<td>[+75/-75/-75/+75]</td>
</tr>
<tr>
<td>E</td>
<td>[+88/-88/-88/+88]</td>
</tr>
<tr>
<td>F</td>
<td>[+45/-45/+45/-45]</td>
</tr>
<tr>
<td>G</td>
<td>[+55/-55/+55/-55]</td>
</tr>
<tr>
<td>H</td>
<td>[+60/-60/+60/-60]</td>
</tr>
<tr>
<td>I</td>
<td>[+75/-75/+75/-75]</td>
</tr>
<tr>
<td>J</td>
<td>[+88/-88/+88/-88]</td>
</tr>
</tbody>
</table>
6.2 Determination of Mechanical Properties

Mechanical tests are applied to determine the engineering constants. Two strain gauges are located in the directions 1 and 2. In this way, the modulus of elasticity, E_i and Poisson’s ratio, ν_{12} are determined. The test specimen is loaded by Instron-1114 Tensile Machine. The modulus of elasticity in the transverse direction E_2 is measured by using another strain gauge. A strain gauge is located on test specimens; the fibers are oriented 45° degrees with respect to loading direction. E_x is measured from the strain gauge measurements, ε_x. G_{12} is computed from

$$G_{12} = \frac{1}{4\left(\frac{1}{E_x} - \frac{1}{E_1} - \frac{1}{E_2} - \frac{2\nu_{12}}{E_i}\right)}$$ \hspace{1cm} (6.1)

Figure 6.2 shows Iosipescu test method which is used to find the shear strength S. It is computed from

$$S = \frac{P_{\text{max}}}{t \cdot c}$$

In addition, the strength in the first and second principal material directions is computed. They are X_t and Y_t for tensile strengths and X_c and Y_c for compressive strengths. The mechanical properties in the third principal direction are assumed to be equal to those in the second principal direction.

Thermal expansion coefficients in the principal material directions are measured by strain gauges. For this measurement, temperature is increased step by step, and then the strains in the principal material directions are determined. The thermal expansion coefficients are calculated from the strains in the principal material directions.
The strain gauges are isolated from water and the test specimens are put into the water in order to measure the hygrothermal coefficients. Therefore, the specimen is waited for two hours (based on the ASTM standards), at 23°C, in the water in order to enable water absorption by the composite material. The coefficients of the hygrothermal expansion and moisture concentration are measured from the test specimens in the principal material directions as β_1, β_2 and c, respectively. Mechanical properties of composite material are shown in Table 6.3.

![Figure 6.2 Iosipescu test method.](image)

Table 6.3 Mechanical properties of composite material.

<table>
<thead>
<tr>
<th>E_1(MPa)</th>
<th>E_2(MPa)</th>
<th>G_{12}(MPa)</th>
<th>ν_{12}</th>
<th>X_t(MPa)</th>
<th>Y_t(MPa)</th>
<th>X_c(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36514</td>
<td>14948</td>
<td>6350</td>
<td>0.24</td>
<td>938</td>
<td>89</td>
<td>938</td>
</tr>
<tr>
<td>Y_c(MPa)</td>
<td>S(MPa)</td>
<td>α_1(1/°C)</td>
<td>α_2(1/°C)</td>
<td>β_1</td>
<td>β_2</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>88</td>
<td>7.52x10^{-6}</td>
<td>47.77x10^{-6}</td>
<td>-46x10^{-4}</td>
<td>14x10^{-4}</td>
<td></td>
</tr>
</tbody>
</table>
6.3 Setting Experimental Equipments

Figure 6.3 shows closed end internal pressure test apparatus for GRP pipe. Figure 6.5 shows details of test apparatus.

![Figure 6.3 Closed-end internal pressure test apparatus.](image)

Specimens were exposed to closed end internal pressure tests using the instrument design shown in Figure 6.3.

![Figure 6.4 A photograph of test apparatus.](image)
Static internal pressure tests were conducted using a 250 bar PLC controlled servo-hydraulic testing machine. The procedure for determining burst pressure of composite pressure vessel is based on ASTM standard. Test specimens were loaded with internal pressure to burst pressure using a 1 MPa/min loading rate. Figure 6.6 shows a PLC controlled servo-hydraulic testing machine.

Figure 6.5 Details of test apparatus.

A = Composite pressure vessel
B, D = Compressing parts
C = Rubber seal element
E = System locking member component
F = Flange
G = Nut
A protective test box was manufactured for observing the test specimen during pressure tests. It provides taking photo and video easily and protects harmful effects of hydraulic oil. Figure 6.6 shows a protective test box.

Figure 6.6 A PLC controlled servo-hydraulic testing machine.

Figure 6.7 A protective test box.
CHAPTER SEVEN
RESULTS AND DISCUSSIONS

In this study, three different methods were used to determine first failure pressure of composite pressure vessels. Analytical method, finite element method and experimental method were applied respectively.

A glass-epoxy composite layer is used in the solution. The layers are oriented symmetrically or antisymmetrically. The Tsai-Wu criterion is used to compute the first failure pressure of the composite layers in a simple form.

In order to see how structures behave, the theoretical results are necessary for a given material, geometry and loading combination. A computer program is developed with MATHEMATICA and FORTRAN using the derived formulation of the stresses. In order to determine the burst pressure, the performance of the specified composite pressure vessel is taken as the only limiting value. Burst pressure is determined by using the first-ply failure criterion.

The design outputs of the computer program are optimum winding angle, burst pressure, geometry and loading combination.

In the literature, the optimum winding angle for filament wound composite pressure vessels is given as 54.74° by netting analysis. Using the current procedure for the internal pressure loading, the optimum winding angle is obtained as 61° for laminates composites and as 90° for a lamina (the winding angle is assumed to be only positive). In order to decide the optimum winding angle, the winding angle was chosen between 0° and 90° and each angle was computed with a step size of 1° via computer program and was calculated burst pressure both symmetrically and antisymmetrically conditions. These results are given in Figure 7.1, Figure 7.2 and Figure 7.3. Numerical solutions are studied symmetrical and antisymmetrical conditions for the orientation angle of 45°, 55°, 60°, 75° and 88°.
Some test specimens which have different orientations were performed to test first failure pressure of composite vessels. In these tests, the composite vessels were loaded internal pressure until failure.

![Figure 7.1 Variation of burst pressure with increasing winding angle for a lamina.](image)

Figure 7.1 shows variation of burst pressure with increasing winding angle for open-end condition.

Table 7.1 Burst pressure results for different methods.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>WINDING ANGLE (°)</th>
<th>ANSYS (MPa)</th>
<th>MATHEMATICA (MPa)</th>
<th>FORTRAN (MPa)</th>
<th>EXPERIMENTAL (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetrical</td>
<td>45</td>
<td>5.44</td>
<td>5.46</td>
<td>5.60</td>
<td>5.66</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>7.14</td>
<td>7.19</td>
<td>7.20</td>
<td>10.24</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>7.52</td>
<td>7.55</td>
<td>7.60</td>
<td>7.40</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>6.66</td>
<td>6.66</td>
<td>6.80</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>6.18</td>
<td>6.15</td>
<td>5.00</td>
<td>1.74</td>
</tr>
<tr>
<td>Antisymmetrical</td>
<td>45</td>
<td>4.48</td>
<td>4.82</td>
<td>4.60</td>
<td>5.86</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>5.31</td>
<td>5.96</td>
<td>5.60</td>
<td>11.18</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>5.57</td>
<td>6.30</td>
<td>5.80</td>
<td>7.36</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>5.95</td>
<td>6.27</td>
<td>6.20</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>6.14</td>
<td>6.14</td>
<td>5.20</td>
<td>2.18</td>
</tr>
</tbody>
</table>
Figure 7.2 Numerical results of burst pressure with increasing winding angle for a laminate symmetrically.

Figure 7.3 Numerical results of burst pressure with increasing winding angle for a laminate antisymmetrically.

In addition to some numerical solution, commercial software ANSYS 10.0 was used to determine first failure pressure of composite pressure vessel. Figure 7.4 shows results of finite element method.
Experimental studies were the crucial point of this research. Experimental results are compared with the literature results and these solutions are discovered very similar. The optimum winding angle is obtained 55° for internal pressure loading composite pressure vessels. Figure 7.5 shows variations of burst pressure with increasing winding angle symmetrical and antisymmetrical.
Figure 7.6 and Figure 7.7 show differences between experimental results and other methods. Because of these differences the quadratic polynomial criteria consist of parameters that must be experimentally determined. Often, these parameters are difficult to determine with certainty.

![Figure 7.6 Comparing theoretical results, finite element results with experimental result symmetrically.](image1)

Figure 7.7 Comparing theoretical results, finite element results with experimental results antisymmetrically.

![Figure 7.7 Comparing theoretical results, finite element results with experimental results antisymmetrically.](image2)

Figure 7.8 to Figure 7.11 show different failure mechanisms.
Figure 7.8 The beginning of the whitening damage mechanism.

Figure 7.9 Leakage initiation damage mechanism.
Figure 7.10 Fiber breakage damage mechanism.

Figure 7.11 Fiber breakage damage mechanism.
CHAPTER EIGHT
CONCLUSION AND RECOMMENDATIONS

This thesis is subdivided into two major parts: The theoretical studies for composite pressure vessels were covered in Chapter 4 and Chapter 5, and experimental investigations of composite pressure vessels were presented in Chapter 6.

The theoretical studies include a simplified elastic solution to analyze the burst pressure of multi-layered composite pressure vessels under internal pressure and hygrothermal force. The optimum winding angle for the composite pressure vessel analysis with the internal pressure loading case is obtained as 61° for laminates and as 90° for a lamina. The temperatures influence is found ineffective for the burst pressure.

Finite element method was an advantage to determine first failure pressure easily. Considering an orthotropic material and its progressive failure, stress analysis on composite pressure vessels becomes very complex. In this study, a finite element analysis approach is employed. It is significant to integrate the composite material and composite failure into a finite element analysis geared towards the design of composite pressure vessels. FEA analysis on one E-glass-epoxy composite pressure vessel for which experimental data is available carried out. Comparisons of these results have shown that FEA is an assistant tool for prediction of the burst pressure when coupled with an appropriate failure criterion. In addition we had comparison with theoretical solutions by using this method.

Composite material failure has been extensively studied. The thesis also focuses on the failure analysis composite pressure vessels by Tsai-Wu failure criteria.

Failure pressure of the composite pressure vessel experimentally, there is no differences between symmetrical winding and antisymmetrical winding. But theoretical results have some differences symmetrical and antisymmetrical. Moments
between the layers are effective at these differences. The optimum winding angle in a single winding angle composite pressure vessel is about 55°.

In this work, only internal pressure was studied. Other loads such that impact, variation in temperature, external pressure and their combinations are possible. Fatigue analysis is also extremely important, since typically 15000-20000 cycles are the involved in qualification tests requisite for commercial service approvals. The topic of liner materials and associated behaviour was not broached.

Voids within the composite have an effect on material properties. Modelling including voids should be considered.
REFERENCES

