CH. 5

University of Minnesota
Professor of Mechanical Engineering
S. A. Patankar

AND FLUID FLOW
HEAT TRANSFER
NUMERICAL
5.1 THE TASK

CONVECTION AND DIFFUSION

FIVE

CHAPTER
CONVECTION AND DIFFUSION

5.2 STUDY OF ONE-DIMENSIONAL

The convection-diffusion equation is applicable under these circumstances, and the current problem is about the spread of a pollutant in a channel with a constant cross-sectional area. We will solve this problem by using the convection-diffusion equation.

\[
\frac{\partial \phi}{\partial x} + \frac{\partial q}{\partial t} = \frac{1}{\alpha} \frac{\partial^2 \phi}{\partial x^2}
\]

Where \(\frac{\partial q}{\partial t} \) is the rate of change of concentration, \(\alpha \) is the diffusion coefficient, and \(\frac{\partial^2 \phi}{\partial x^2} \) is the second derivative of concentration with respect to space.

REFERENCES TO PREVIOUS SECTIONS MAY NOT BE RECENTED.
The condition stated (1.7) can be more compactly written as

\[0 > \frac{d\phi}{dx} \quad \text{if} \quad \phi > \phi \]

and

\[0 < \frac{d\phi}{dx} \quad \text{if} \quad \phi < \phi \]

Thus,

The value of \(\phi \) at an interior point is equal to the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.

The value of \(\phi \) at an interior point is determined by the value of \(\phi \) at the next point.
\[\frac{1}{\sqrt{n}} \approx d \]

where \(d \) is a Pedal number defined by

\[\frac{1}{(1/2\sqrt{n})} = \frac{\phi - \frac{x}{\sqrt{n}}}{\phi - \phi} \]

the solution of Eq. 1 is

\[\phi = \phi \quad T = x \quad n \]

\[\phi = \phi \quad 0 = x \quad n \]

The exact solution scheme is

\[\text{CONVECTION AND DIFFUSION} \]

\[\text{RECIRCULATION AND FLOW} \]

\[\text{When Eq. (1) is replaced by this scheme, the diffraction equation becomes} \]

\[\begin{align*}
 \frac{d}{dt} [\phi] & + \frac{d}{dx} [\phi] = \frac{d}{dx} \phi \\
 \frac{d}{dt} [\phi] & + \frac{d}{dx} [\phi] = \frac{d}{dx} \phi \\
 \frac{d}{dt} [\phi] & + \frac{d}{dx} [\phi] = \frac{d}{dx} \phi
\end{align*} \]

where \(\phi \) is replaced by Eq. (1), the diffraction equation is

\[\frac{d}{dt} [\phi] + \frac{d}{dx} [\phi] = \frac{d}{dx} \phi \]
(9.2.3) \((a \Delta - \beta \Delta) + \gamma p + \lambda \Delta = \delta \Delta\)

(9.2.5) \(1 - (\rho a / \Delta) \frac{dx}{dx} \frac{dx}{dx} = \gamma p\)

(9.2.5) \(1 - (\beta \rho a / \Delta) \frac{dx}{dx} = \lambda \Delta\)

\(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

where \(\phi\) can be cast into our desired form.

(9.2.5) \(0 = \left(1 - (\rho a / \Delta) \frac{dx}{dx} \right) \phi \frac{dx}{dx} - (\beta \rho a / \Delta) \phi \frac{dx}{dx} = \delta \frac{dx}{dx} \phi\)

which is the desired form of Eq. (9.2.5). It is noted that this behavior occurs in an exact solution that obeys Eq. (9.2.5) and is generally difficult to obtain. Therefore, Eq. (9.2.5) is derived from the exact solution shown in Fig. 5.2. The resulting equation would not apply for any of these values of \(\phi\) or \(\beta\).

(9.2.5) \(\frac{dx}{dx} \phi \left(1 - (\rho a / \Delta) \frac{dx}{dx} \phi \right) = \delta \frac{dx}{dx} \phi\)

(9.2.5) \(\frac{dx}{dx} \phi \left(1 - (\beta \rho a / \Delta) \frac{dx}{dx} \phi \right) = \delta \frac{dx}{dx} \phi\)

where \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

The solution of this problem into Eq. (9.2.5) is shown in Fig. 5.2. This solution is of the form \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential equation can be used as a profile between points at \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

where \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

The solution of this problem into Eq. (9.2.5) is shown in Fig. 5.2. This solution is of the form \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential equation can be used as a profile between points at \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

where \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

The solution of this problem into Eq. (9.2.5) is shown in Fig. 5.2. This solution is of the form \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential equation can be used as a profile between points at \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

where \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

The solution of this problem into Eq. (9.2.5) is shown in Fig. 5.2. This solution is of the form \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential equation can be used as a profile between points at \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

where \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

The solution of this problem into Eq. (9.2.5) is shown in Fig. 5.2. This solution is of the form \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential equation can be used as a profile between points at \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

where \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

The solution of this problem into Eq. (9.2.5) is shown in Fig. 5.2. This solution is of the form \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential equation can be used as a profile between points at \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

where \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

The solution of this problem into Eq. (9.2.5) is shown in Fig. 5.2. This solution is of the form \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and the differential equation can be used as a profile between points at \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\) and \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)

where \(\Delta \phi \frac{\Delta}{\rho \phi} + \lambda \Delta = \delta \Delta \phi\)
The second order is recommended for use.

Besides the explicit schemes, two such schemes will now be presented, which require less memory and computer time than the explicit schemes.

Where we need an easy-to-compute scheme, the explicit schemes are generally faster. Because of this, the explicit schemes are chosen. These schemes are also more convenient for solving the difference equations and are used for the steady-state problem. Also, the explicit scheme uses the explicit form of the source terms. When used numerically, these coefficient expressions define the convection-diffusion scheme.
The power-law-exponential scheme for \(f \) can be written as

\[\exp(\beta f) = \exp(\alpha f) \]

where \(\alpha \) and \(\beta \) are constants. The scheme is non-linear and is useful for problems with large gradients.

The power-law-exponential scheme is defined as

\[f = \frac{1}{\alpha} \ln\left(1 + \beta f\right) \]

where \(\alpha \) and \(\beta \) are constants. The scheme is non-linear and is useful for problems with large gradients.

The power-law-exponential scheme is defined as

\[f = \frac{1}{\alpha} \ln\left(1 + \beta f\right) \]

where \(\alpha \) and \(\beta \) are constants. The scheme is non-linear and is useful for problems with large gradients.

The power-law-exponential scheme is defined as

\[f = \frac{1}{\alpha} \ln\left(1 + \beta f\right) \]

where \(\alpha \) and \(\beta \) are constants. The scheme is non-linear and is useful for problems with large gradients.

The power-law-exponential scheme is defined as

\[f = \frac{1}{\alpha} \ln\left(1 + \beta f\right) \]

where \(\alpha \) and \(\beta \) are constants. The scheme is non-linear and is useful for problems with large gradients.

The power-law-exponential scheme is defined as

\[f = \frac{1}{\alpha} \ln\left(1 + \beta f\right) \]

where \(\alpha \) and \(\beta \) are constants. The scheme is non-linear and is useful for problems with large gradients.

The power-law-exponential scheme is defined as

\[f = \frac{1}{\alpha} \ln\left(1 + \beta f\right) \]

where \(\alpha \) and \(\beta \) are constants. The scheme is non-linear and is useful for problems with large gradients.

The power-law-exponential scheme is defined as

\[f = \frac{1}{\alpha} \ln\left(1 + \beta f\right) \]

where \(\alpha \) and \(\beta \) are constants. The scheme is non-linear and is useful for problems with large gradients.

The power-law-exponential scheme is defined as

\[f = \frac{1}{\alpha} \ln\left(1 + \beta f\right) \]

where \(\alpha \) and \(\beta \) are constants. The scheme is non-linear and is useful for problems with large gradients.
The numerical scheme for the function $u(x,t)$ can be written by

\[
\left\{ \begin{array}{l}
(\phi')d + (\phi d) = 0 \\
(\phi')d + (\phi d) = M_d + 3d \\
\end{array} \right.
\]

where

\[
M_d = \frac{\partial u}{\partial x}
\]

The various schemes derived so far can now be thought of as accuracy

\[
\left\{ \begin{array}{l}
(\theta - d) + M_d + 3d = d \\
(\theta) + (\theta d) = M_d \\
(\theta) + (\theta d) = 3d \\
\end{array} \right.
\]

The diffusion constant D and the time step Δt determine the following system of difference equations.

\[
\left\{ \begin{array}{l}
(1 + \phi - \psi) = 1 + \phi d - \psi \\
(1 + \phi - \psi) = \psi d - \phi \\
\end{array} \right.
\]

By combining these two difference equations, we get:

\[
0 &= (\theta) + (\phi d) = (\phi d)
\]

and then, by use of Eq. (63),

\[
0 &= (\theta) + (\phi d) = (\phi d)
\]

This, for all values of ϕ, is possible and therefore we can write

\[
(1 + \phi - \psi) = \psi d - \phi
\]

The difference equations for the function $u(x,t)$ can be written by

\[
\left\{ \begin{array}{l}
(\theta - d) + M_d + 3d = d \\
(\theta) + (\theta d) = M_d \\
(\theta) + (\theta d) = 3d \\
\end{array} \right.
\]

where

\[
M_d = \frac{\partial u}{\partial x}
\]

The various schemes derived so far can now be thought of as accuracy.

\[
\left\{ \begin{array}{l}
(\theta - d) + M_d + 3d = d \\
(\theta) + (\theta d) = M_d \\
(\theta) + (\theta d) = 3d \\
\end{array} \right.
\]

The diffusion constant D and the time step Δt determine the following system of difference equations.

\[
\left\{ \begin{array}{l}
(1 + \phi - \psi) = 1 + \phi d - \psi \\
(1 + \phi - \psi) = \psi d - \phi \\
\end{array} \right.
\]

By combining these two difference equations, we get:

\[
0 &= (\theta) + (\phi d) = (\phi d)
\]

and then, by use of Eq. (63),

\[
0 &= (\theta) + (\phi d) = (\phi d)
\]

This, for all values of ϕ, is possible and therefore we can write

\[
(1 + \phi - \psi) = \psi d - \phi
\]
5.3.1 Details of the Derivation

The equation to be solved is the continuity equation in two dimensions, which describes the conservation of mass in a fluid. The equation is:

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \frac{\mathbf{F}}{\rho} + \mathbf{f}$$

where ρ is the density, \mathbf{v} is the velocity vector, p is the pressure, \mathbf{F} is the body force per unit volume, and \mathbf{f} is the body force per unit mass.

For an incompressible fluid, ρ is constant and the equation simplifies to:

$$\nabla \cdot \mathbf{v} = 0$$

The two-dimensional form of this equation can be written as:

$$\frac{\partial \mathbf{v}_x}{\partial x} + \frac{\partial \mathbf{v}_y}{\partial y} = 0$$

where \mathbf{v}_x and \mathbf{v}_y are the components of the velocity vector in the x and y directions, respectively.

CONVECTION AND DIFFUSION

The two-dimensional form of the convection and diffusion equation is:

$$\nabla \cdot (\mathbf{c} \mathbf{v}) = \nabla \cdot (\mathbf{c} \mathbf{S})$$

where \mathbf{c} is the concentration (or temperature) vector and \mathbf{S} is the source term per unit volume.

For a steady-state problem, the term $\nabla \cdot (\mathbf{c} \mathbf{V})$ is zero, and the equation simplifies to:

$$\nabla \cdot (\mathbf{c} \mathbf{S}) = 0$$

5.3.2 DISCRETIZATION EQUATION

The discretization equation for the two-dimensional convection and diffusion equation is:

$$\frac{\partial \mathbf{c}}{\partial t} + \nabla \cdot (\mathbf{c} \mathbf{v}) = 0$$

For a steady-state problem, this equation becomes:

$$\nabla \cdot (\mathbf{c} \mathbf{S}) = 0$$

where \mathbf{S} is the source term per unit volume.

The discretization equation is used to solve the equation numerically. The finite volume method is commonly used for this purpose. The method involves dividing the domain into small control volumes and applying the conservation laws to each control volume.

The discretization equation is used to determine the concentration (or temperature) at each control volume center. The equation is solved iteratively until convergence is achieved.

In summary, the discretization equation is used to solve the convection and diffusion equation numerically. The method provides a powerful tool for solving problems in two dimensions, which are commonly encountered in engineering and scientific applications.
The two-dimensional discretization equation can now be written as

\[(S_\phi)\]
\[\left[(\phi - \Delta_\phi) \right] + (\phi - \Delta_\phi) \frac{\partial^2 \phi}{\partial x^2} = S_\phi \]

\[(S_\chi)\]
\[\left[(\chi - \Delta_\chi) \right] + (\chi - \Delta_\chi) \frac{\partial^2 \chi}{\partial x^2} = S_\chi \]

\[(S_\gamma)\]
\[\left[(\gamma - \Delta_\gamma) \right] + (\gamma - \Delta_\gamma) \frac{\partial^2 \gamma}{\partial x^2} = S_\gamma \]

where

\[q + S_\phi \beta_\phi + N_\phi \phi + M_\phi \phi + B_\phi \phi = \phi \Delta_\phi \]

\[\text{CONVECTION AND DIFFUSION} \]

\[\text{The final discretization function is now fully defined.} \]

\[\text{The convection volume is given by the following equation:} \]

\[\left(\phi \frac{\partial \phi}{\partial x} \right)_v = \frac{1}{\Delta x} \frac{\partial \phi}{\partial x} \]

\[\text{where} \]

\[\phi = \text{the convection volume flow rate per unit area} \]

\[\Delta x = \text{the cell size} \]

\[\frac{\partial \phi}{\partial x} = \text{the convection volume flow rate per unit area} \]

\[\text{The convection volume is then:} \]

\[\left(\phi \frac{\partial \phi}{\partial x} \right)_v = \frac{1}{\Delta x} \frac{\partial \phi}{\partial x} \]

\[\text{Similarly,} \]

\[\left(\chi \frac{\partial \chi}{\partial x} \right)_v = \frac{1}{\Delta x} \frac{\partial \chi}{\partial x} \]

\[\left(\gamma \frac{\partial \gamma}{\partial x} \right)_v = \frac{1}{\Delta x} \frac{\partial \gamma}{\partial x} \]

\[\text{In a similar manner, we can integrate the continuity equation over each} \]

\[\text{cell.} \]

\[\text{The convection term is taken to be zero over the control volume.} \]

\[\text{The convection term is} \]

\[\text{given by:} \]

\[\left(\phi \frac{\partial \phi}{\partial x} \right)_v = \frac{1}{\Delta x} \frac{\partial \phi}{\partial x} \]

\[\text{where} \]

\[\phi = \text{the convection volume flow rate per unit area} \]

\[\Delta x = \text{the cell size} \]

\[\frac{\partial \phi}{\partial x} = \text{the convection volume flow rate per unit area} \]

\[\text{The convection volume is then:} \]

\[\left(\phi \frac{\partial \phi}{\partial x} \right)_v = \frac{1}{\Delta x} \frac{\partial \phi}{\partial x} \]

\[\text{Similarly,} \]

\[\left(\chi \frac{\partial \chi}{\partial x} \right)_v = \frac{1}{\Delta x} \frac{\partial \chi}{\partial x} \]

\[\left(\gamma \frac{\partial \gamma}{\partial x} \right)_v = \frac{1}{\Delta x} \frac{\partial \gamma}{\partial x} \]

\[\text{The control volume is given by the following continuity equation:} \]

\[(S_\phi)\]
\[\left[(\phi - \Delta_\phi) \right] + (\phi - \Delta_\phi) \frac{\partial^2 \phi}{\partial x^2} = S_\phi \]

\[(S_\chi)\]
\[\left[(\chi - \Delta_\chi) \right] + (\chi - \Delta_\chi) \frac{\partial^2 \chi}{\partial x^2} = S_\chi \]

\[(S_\gamma)\]
\[\left[(\gamma - \Delta_\gamma) \right] + (\gamma - \Delta_\gamma) \frac{\partial^2 \gamma}{\partial x^2} = S_\gamma \]

where

\[q + S_\phi \beta_\phi + N_\phi \phi + M_\phi \phi + B_\phi \phi = \phi \Delta_\phi \]
The flow rates and conductances are defined as

\[\frac{d}{dx} \frac{\phi}{\Phi} + \frac{d}{dx} \frac{\phi}{\Phi} + \frac{d}{dx} \frac{\phi}{\Phi} = q \]

where

\[q + \frac{d}{dx} \frac{\phi}{\Phi} = \frac{d}{dx} \frac{\phi}{\Phi} \]

The pressure difference is provided for which the function \(\phi(x) \) can be evaluated from Table 2.2 for the desired volume

\[\phi(x) \frac{d}{dx} \frac{\phi}{\Phi} = \frac{d}{dx} \frac{\phi}{\Phi} \]

and the fluid numbers

\[\phi(x) \frac{d}{dx} \frac{\phi}{\Phi} = \phi(x) \frac{d}{dx} \frac{\phi}{\Phi} \]

The power-law equation is recommended, for which

\[\phi(x) \frac{d}{dx} \frac{\phi}{\Phi} = \phi(x) \frac{d}{dx} \frac{\phi}{\Phi} \]

The condition for the unknown values at time 1, while all other values

\[\phi(x) \frac{d}{dx} \frac{\phi}{\Phi} = \phi(x) \frac{d}{dx} \frac{\phi}{\Phi} \]

The conditions for the unknown values at time 1, while all other values

\[\phi(x) \frac{d}{dx} \frac{\phi}{\Phi} = \phi(x) \frac{d}{dx} \frac{\phi}{\Phi} \]
5.5.2 The Outer Boundary Condition

A coordinate is needed at the outer boundary. Consider the grid shown in the figure. If the outer boundary is needed at cell (a), determine the edge variables. If the outer boundary is needed at cell (b), determine the edge variables. The outer boundary conditions given above are for a two-dimensional problem. When the outer boundary is needed, the outer boundary conditions may be used.

5.5.1 What Makes a Space Coordinate One-Way?

A space coordinate creates a one-way coordinate if the coordinate is used in only one direction. This is a one-way coordinate if we choose to use only one coordinate. In Chapter 2, we noted that coordinates can be classified as one-way.

5.5. ONE-WAY SPACE COORDINATE

\[f(x,y) = 0 \]

The treatment of the outer boundary conditions in some detail in

Figure 5.10 Situation with one-way space coordinate.
The common view of PDEs diffusion

56. The Common View of PDEs Diffusion

PDEs are a class of partial differential equations that play a central role in many fields of science and engineering. They are used to model a wide range of phenomena, from heat transfer and fluid flow to electromagnetic fields and quantum mechanics. In this section, we will discuss a fundamental approach to understanding PDEs.

CONVECTION AND DIFFUSION

CONVECTION AND DIFFUSION

Numerical Heat Transfer and Fluid Flow

Page 110
Thus, we have

\[\frac{\partial \phi}{\partial t} = \nabla \cdot (D \nabla \phi) \]

where \(\phi \) is the convection-diffusion equation, and \(D \) is the diffusion coefficient.

The solutions of the convection-diffusion equation become more complex when \(\phi \) is not constant in time, as in the case of transient flow. In this case, the diffusion term \(\nabla \cdot (D \nabla \phi) \) plays a significant role in determining the solution.

2. Convection flow at \(0^\circ \) to the grid layer. The solution changes significantly with the time step.

3. Convection flow at \(90^\circ \) to the grid layer. The solution changes significantly with the time step.

In general, the convection-diffusion equation can be solved using numerical methods such as the finite difference method or finite element method. The choice of method depends on the specific problem and the desired accuracy.
3.7 CONVECTION AND DIFFUSION

CLOSEURE

PROBLEMS

We are on our way in the next chapter.

L1. In a steady two-dimensional flow, the velocity ϕ is governed by

$$\frac{\partial \phi}{\partial t} + \nabla \cdot \mathbf{u} = 0$$

This is the governing equation for the conservation of mass in a steady flow. The equation states that the rate of change of mass in a control volume is zero for a steady flow.

3.7.1 CONVECTION AND DIFFUSION

Numerical heat transfer and fluid flow
Convection and Dispersion

\[
\begin{bmatrix}
\frac{d}{dx} \\
\frac{d}{dx}
\end{bmatrix}
\begin{bmatrix}
\phi(x) \\
\phi(x)
\end{bmatrix} = -\frac{\alpha^2}{\beta^2} \begin{bmatrix}
\phi(x) \\
\phi(x)
\end{bmatrix} = -\frac{\alpha_1^2}{\beta_1^2}
\]

Note that \(\phi(x) \) is the temperature profile and \(\phi(x) \) is the concentration profile.

The solution of the equation \(\frac{d}{dx} \phi(x) = \phi(x) \) is given by:

\[
\phi(x) = \phi_0 e^{x/\theta}
\]

Convection and dispersion are governed by the diffusion equation:

\[
\frac{\partial \phi}{\partial t} = \alpha^2 \frac{\partial^2 \phi}{\partial x^2}
\]

where \(\alpha \) is the thermal diffusivity and \(\phi \) is the temperature or concentration.

For steady-state convection, the velocity \(u \) is constant, and the equation becomes:

\[
\frac{d}{dx} \phi(x) = -u \frac{\partial \phi}{\partial x}
\]

Problem 5.1

Figure 16: Boundary conditions for numerical heat transfer and fluid flow.
C. G.

University of Minnesota
Professor of Mechanical Engineering

Sheila A. Painter

AND FLUID FLOW
HEAT TRANSFER
NUMERICAL

W. J. Minkowycz and E. M. Sparrow, Editors
Serres in Computational Methods in Mechanics and Thermal Sciences
6.1 NEED FOR A SPECIAL PROCEDURE

CALCULATION OF THE FLOW FIELD

CHAPTER SIX
6.2 SOME RELATED DIFFICULTIES

This section explains a few more difficulties about which we shall discuss before we begin in the next chapter, where we shall discuss in detail the possible solutions to these problems.

The second-order differential equations are described by the following system of equations:

\[\frac{d^2}{dx^2} \left(\frac{d}{dx} + \frac{d}{dy} \right) \mathbf{u} = \mathbf{f} \]

\[\frac{d^2}{dy^2} \left(\frac{d}{dx} + \frac{d}{dy} \right) \mathbf{u} = \mathbf{g} \]

This system can be rewritten in matrix form as:

\[\begin{pmatrix} \frac{d^2}{dx^2} + \frac{d^2}{dy^2} \\ \frac{d^2}{dx^2} + \frac{d^2}{dy^2} \end{pmatrix} \begin{pmatrix} \frac{d}{dx} \\ \frac{d}{dy} \end{pmatrix} \mathbf{u} = \begin{pmatrix} \mathbf{f} \\ \mathbf{g} \end{pmatrix} \]

In the previous chapter we considered the problem of finding the eigenvalues and eigenvectors of the matrix

\[\begin{pmatrix} \frac{d^2}{dx^2} + \frac{d^2}{dy^2} \\ \frac{d^2}{dx^2} + \frac{d^2}{dy^2} \end{pmatrix} \]

and showed that the eigenvalues are given by the roots of the characteristic equation

\[\det \begin{pmatrix} \frac{d^2}{dx^2} + \frac{d^2}{dy^2} - \lambda \\ \frac{d^2}{dx^2} + \frac{d^2}{dy^2} - \lambda \end{pmatrix} = 0 \]

This equation can be solved using various methods, such as power series expansion, which we shall discuss in detail in the next chapter.
The equation of continuity for the two-dimensional case is:

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \]

Where
- \(u \) is the velocity in the x-direction
- \(v \) is the velocity in the y-direction

If we integrate this equation along the contour shown in Figure 6.3, we get:

The numerical method for solving the equation is:

1. **Discretization**: The domain is divided into a grid of control volumes.
2. **Approximation**: The governing equations are approximated at each grid point.
3. **Solution**: The resulting system of algebraic equations is solved numerically.

A common method is the finite volume method, where the equations are solved on a grid of control volumes.

Figure 6.2: Zeroth-pass solution grid.

Figure 6.1: Cross-sectional forces.

Figure 6.3: Zeroth-pass solution.

Figure 6.4: Calculation of the flow field.
6.3 A REMEDY: THE STAGGERED GRID

The staggered grid provides a way to resolve the issues encountered with the different solutions in the numerical methods. In the staggered grid, the velocities are calculated at different points, allowing for a more accurate representation of the flow field.

The staggered grid is defined by the equation:

\[\theta = \varphi \cdot \psi \]

where \(\theta \) represents the velocity at a particular point, \(\varphi \) is the velocity component in the \(x \)-direction, and \(\psi \) is the velocity component in the \(y \)-direction.

The staggered grid helps to alleviate the problems associated with the non-conservative form of the equations. It provides a more accurate representation of the flow field and helps to resolve the issues encountered with the different solutions in the numerical methods.
6.4 THE MOMENTUM EQUATIONS

The momentum equations are essential in fluid dynamics and are derived from Newton's second law of motion. These equations describe the conservation of momentum in a fluid flow. They are applicable to incompressible and compressible flows and are used to model a wide range of fluid flow phenomena, from laminar to turbulent flows.

The momentum equations are typically expressed in a conservation form, which means that the rate of change of momentum in a fluid element is equal to the net external forces acting on the element. This can be mathematically represented as:

\[\nabla \cdot \left(\rho \mathbf{u} \mathbf{u} \right) = \rho \mathbf{f} \]

where \(\nabla \cdot \) is the divergence operator, \(\rho \) is the fluid density, \(\mathbf{u} \) is the fluid velocity, and \(\mathbf{f} \) is the body force per unit volume.

In Cartesian coordinates, the momentum equations for each component of the velocity vector (\(u_x, u_y, u_z \)) are:

\[\frac{\partial}{\partial x} (\rho u_x u_x) + \frac{\partial}{\partial y} (\rho u_x u_y) + \frac{\partial}{\partial z} (\rho u_x u_z) = \rho f_x - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \tau_{xy} + \frac{\partial}{\partial y} \tau_{yx} + \frac{\partial}{\partial z} \tau_{xz} + \frac{\partial}{\partial z} \tau_{zx} \]

\[\frac{\partial}{\partial x} (\rho u_y u_x) + \frac{\partial}{\partial y} (\rho u_y u_y) + \frac{\partial}{\partial z} (\rho u_y u_z) = \rho f_y - \frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \tau_{xy} + \frac{\partial}{\partial y} \tau_{yx} + \frac{\partial}{\partial z} \tau_{yz} + \frac{\partial}{\partial z} \tau_{zy} \]

\[\frac{\partial}{\partial x} (\rho u_z u_x) + \frac{\partial}{\partial y} (\rho u_z u_y) + \frac{\partial}{\partial z} (\rho u_z u_z) = \rho f_z - \frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \tau_{xz} + \frac{\partial}{\partial y} \tau_{zx} + \frac{\partial}{\partial z} \tau_{zz} + \frac{\partial}{\partial z} \tau_{zx} \]

These equations are fundamental in the study of fluid dynamics and are used in various applications, including aerodynamics, hydrodynamics, and heat and mass transfer.
The pressure correction to produce n is to be corrected in response to the flow between the grid points x and y. The location of the correction field can be noted, and the calculation of the flow field follows.

6.5. THE PRESSURE AND VELOCITY CORRECTIONS

In these equations, the velocity components and pressure have been given by

\[
\begin{align*}
(6.19) & \quad \nu (n^d - d^d) + q + \omega \frac{\partial q}{\partial y} \Delta = \frac{\omega}{\Delta} \\
(6.19) & \quad \nu (n^d - d^d) + q + \omega \frac{\partial q}{\partial y} \Delta = \frac{\omega}{\Delta} \\
(6.19) & \quad \nu (n^d - d^d) + q + \omega \frac{\partial q}{\partial y} \Delta = \frac{\omega}{\Delta}
\end{align*}
\]

The momentum equations can be added only when the pressure field is dimensional. Thus, a similar equation for the velocity component v can be written:

\[
\begin{align*}
(6.19) & \quad \nu (n^d - d^d) + q + \omega \frac{\partial q}{\partial y} \Delta = \frac{\omega}{\Delta} \\
(6.19) & \quad \nu (n^d - d^d) + q + \omega \frac{\partial q}{\partial y} \Delta = \frac{\omega}{\Delta} \\
(6.19) & \quad \nu (n^d - d^d) + q + \omega \frac{\partial q}{\partial y} \Delta = \frac{\omega}{\Delta}
\end{align*}
\]

The momentum equations for other directions are handled in a similar manner. Figure 6.9 shows the control volume for the y-direction momentum equation, where the x-direction momentum equation is shown in Figure 6.8.
The continuity equation is

\[\nabla \cdot \mathbf{V} = 0 \]

where \(\mathbf{V} \) is the velocity vector. This equation expresses the conservation of mass or the incompressibility of the fluid. It states that the divergence of the velocity field is zero, meaning that the fluid is continuous and no mass is created or destroyed within a control volume.

To derive the continuity equation, we can follow the steps outlined in the original text, which involves considering the net mass entering and leaving a control volume. The differential form of the continuity equation is

\[\nabla \cdot \mathbf{V} = \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0 \]

When the density is constant, this simplifies to

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation

\[\nabla \cdot \mathbf{V} = 0 \]

is used in conjunction with the momentum equations to solve for the velocity field.

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]

The pressure-correction equation for the pressure correction method is

\[\nabla \cdot \mathbf{V} = 0 \]
calculation of the flow field
continued from the previous page...

models of the flow field...
The calculation of the flow field and its temperature becomes essential since the influence of the boundary condition at the wall and the convective heat transfer is extensive.

The approximations introduced in the determination of the equation for the contact condition are presented in Chapter 3. A revised algorithm, SIMPLE, is called SIMPLE.

6.8 A REVISED ALGORITHM: SIMPLE

The SIMPLE algorithm has been extensively tested and has been found to perform particularly well for problems in which the grid is non-uniform, or not in a repeating pattern, or in a repeating pattern with a large gradient.

6.7 THE RELATIVE NATURE OF THE BOUNDARY CONDITIONS

The relative nature of the boundary conditions problem is expressed in terms of a fixed volume. The volume of the domain is determined by the boundary conditions. The boundaries of the domain are fixed and do not change. The calculation is performed at each boundary point.

The calculation begins with the determination of the volume of the domain. The volume is calculated by

$$ \text{Volume} = \int \text{density} \times \text{displacement} \, dV $$

The volume is then used to calculate the volume fraction.

$$ \text{Volume fraction} = \frac{\text{Volume}}{\text{Total volume}} $$

The calculation of the heat transfer and fluid flow is then performed for the domain.

$$ \text{Heat transfer} = \int \text{heat flux} \times \text{area} \, dA $$

$$ \text{Fluid flow} = \int \text{velocity} \times \text{area} \, dA $$

The calculation is performed for each boundary point.

$$ \text{Calculation at Boundary} = \int \text{boundary conditions} \, dA $$

The calculation is then repeated for each boundary point.
The pressure equation would at once give the correct pressure.

A trace of the previous section indicates that the pressure.

If by d we mean the pressure, then it is evident that the pressure.

If we take into account the fact that the pressure.

Similarly, we can write

From the previous section, it is evident that the pressure.

If we take into account the fact that the pressure.

By the next equation, the pressure is defined as follows.

where p' has been defined in Eq. 6.160. Now we define a pseudopressure.

The last equation is the first equation of the previous section.

The concept of pseudopressure is a more efficient solution.

If we employ the pseudopressure equation, it is evident that the pressure.

The concept of pseudopressure is a more efficient solution.

In order to apply the equation, we need to consider the pseudopressure.

To approximate the pseudopressure, we consider the pseudopressure.

It is easy to see the similarity between these equations and Eq. 6.17-6.19.
6.9 CLOSURE

of context

Additional effort on perception is more than compensated by the rich

experience. However, SIMPLER requires fewer functions for communication.

It is also expressed in action for which there is no counterpart in

SIMPLE. In all the actions involved in SIMPLE, and second, the calculation of

advection to the other species is replaced by the pressure student in

which the interaction is expressed in action for the boundary

conditions for the equation is also related to the pressure

equation in SIMPLE, the pressure in section 6-7.2. For the

pressure equation, the pressure student is the expression between

the pressure and the velocity component.

Because of the above transformation, the pressure equation and

the conservation equation are put on the same formal footing.

Thus, the pressure equation in SIMPLE with the pressure student and

velocity component is transformed by

\[\rho \frac{\partial u}{\partial x} + \rho \frac{\partial v}{\partial y} = 0 \]

and

\[\frac{\partial u}{\partial x} = \frac{\partial \rho}{\partial x} + \frac{\partial \rho u}{\partial x}, \quad \frac{\partial v}{\partial y} = \frac{\partial \rho}{\partial y} + \frac{\partial \rho u}{\partial y} \]

By 6.1.2 a two-dimensional flow with constant density and viscosity is governed by

\[\rho \frac{\partial u}{\partial x} + \rho \frac{\partial v}{\partial y} = 0 \]

and

\[\frac{\partial u}{\partial x} = \frac{\partial \rho}{\partial x} + \frac{\partial \rho u}{\partial x}, \quad \frac{\partial v}{\partial y} = \frac{\partial \rho}{\partial y} + \frac{\partial \rho u}{\partial y} \]

PROBLEMS

CALCULATION OF THE FLOW FIELD

NUMERICAL HEAT TRANSFER AND FLUID FLOW
Figure 6.12: Grid points for problem 6.12. The flow field is shown in the figure.

The grid points are labeled with the following notation:
- x: horizontal coordinate
- y: vertical coordinate

The grid is structured to facilitate the application of the conservation laws for mass, momentum, and energy. The grid points are used to discretize the flow field for numerical simulation.

The equations governing the flow field are:
- Conservation of mass: $\nabla \cdot \mathbf{u} = 0$
- Conservation of momentum: $\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u}$
- Conservation of energy: $\rho c_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = \nabla \cdot (k \nabla T)$

where:
- ρ: density
- c_p: specific heat at constant pressure
- k: thermal conductivity
- μ: dynamic viscosity
- p: pressure
- T: temperature

These equations are solved numerically using appropriate boundary conditions and initial conditions to simulate the flow field accurately.