FUNDAMENTALS
OF AIR POLLUTION
ENGINEERING
FUNDAMENTALS OF AIR POLLUTION ENGINEERING

Richard C. Flagan
John H. Seinfeld
California Institute of Technology

PRENTICE HALL
Englewood Cliffs, New Jersey 07632
Contents

Preface xi

Chapter 1 AIR POLLUTION ENGINEERING 1

1.1 Air Pollutants 2
 1.1.1 Oxides of Nitrogen 2
 1.1.2 Sulfur Oxides 3
 1.1.3 Organic Compounds 3
 1.1.4 Particulate Matter 8

1.2 Air Pollution Legislation in the United States 11

1.3 Atmospheric Concentration Units 15

1.4 The Appendices to this Chapter 17

A Chemical Kinetics 17
 A.1 Reaction Rates 22
 A.2 The Pseudo-Steady-State Approximation 24
 A.3 Hydrocarbon Pyrolysis Kinetics 26

B Mass and Heat Transfer 29
 B.1 Basic Equations of Convective Diffusion 30
 B.2 Steady-State Mass Transfer to or from a Sphere in an Infinite Fluid 31
 B.3 Heat Transfer 33
 B.4 Characteristic Times 35

C Elements of Probability Theory 36
 C.1 The Concept of a Random Variable 36
 C.2 Properties of Random Variables 39
 C.3 Common Probability Distributions 42
Chapter 2 COMBUSTION FUNDAMENTALS

2.1 Fuels
2.2 Combustion Stoichiometry
2.3 Combustion Thermodynamics
 2.3.1 First Law of Thermodynamics
 2.3.2 Adiabatic Flame Temperature
 2.3.3 Chemical Equilibrium
 2.3.4 Combustion Equilibria
2.4 Combustion Kinetics
 2.4.1 Detailed Combustion Kinetics
 2.4.2 Simplified Combustion Kinetics
2.5 Flame Propagation and Structure
 2.5.1 Laminar Premixed Flames
 2.5.2 Turbulent Premixed Flames
 2.5.3 Laminar Diffusion Flames
 2.5.4 Turbulent Diffusion Flames
2.6 Turbulent Mixing
2.7 Combustion of Liquid Fuels
2.8 Combustion of Solid Fuels
 2.8.1 Devolatilization
 2.8.2 Char Oxidation

Problems
References

Chapter 3 POLLUTANT FORMATION AND CONTROL IN COMBUSTION

3.1 Nitrogen Oxides
 3.1.1 Thermal Fixation of Atmospheric Nitrogen
 3.1.2 Prompt NO
 3.1.3 Thermal-NOx Formation and Control in Combustors
 3.1.4 Fuel-NOx
 3.1.5 Fuel-NOx Control
Chapter 4 INTERNAL COMBUSTION ENGINES 226

4.1 Spark Ignition Engines 227
 4.1.1 Engine Cycle Operation 229
 4.1.2 Cycle Analysis 231
 4.1.3 Cylinder Turbulence and Combustion Rate 234
 4.1.4 Cylinder Pressure and Temperature 238
 4.1.5 Formation of Nitrogen Oxides 240
 4.1.6 Carbon Monoxide 242
 4.1.7 Unburned Hydrocarbons 244
 4.1.8 Combustion-Based Emission Controls 248
 4.1.9 Mixture Preparation 254
 4.1.10 Intake and Exhaust Processes 259
 4.1.11 Crankcase Emissions 261
 4.1.12 Evaporative Emissions 261
 4.1.13 Exhaust Gas Treatment 265
4.2 Diesel Engine 269
 4.2.1 Diesel Engine Emissions and Emission Control 272
 4.2.2 Exhaust Gas Treatment 276
4.3 Stratified Charge Engines 277
4.4 Gas Turbines 280
Problems 286
References 287

Chapter 5 AEROSOLS 290

5.1 The Drag on a Single Particle: Stokes’ Law 291
5.2 Noncontinuum Effects 293
 5.2.1 The Knudsen Number 293
 5.2.2 Slip Correction Factor 295
5.3 Motion of an Aerosol Particle in an External Force Field 297
 5.3.1 Terminal Settling Velocity 299
 5.3.2 The Stokes Number 304
5.3.3 Motion of a Charged Particle in an Electric Field 305
5.3.4 Motion of a Particle Using the Drag Coefficient 305
5.3.5 Aerodynamic Diameter 307
5.4 Brownian Motion of Aerosol Particles 308
5.4.1 Mobility and Drift Velocity 311
5.4.2 Solution of Diffusion Problems for Aerosol Particles 312
5.4.3 Phoretic Effects 313
5.5 Diffusion to Single Particles 315
5.5.1 Continuum Regime 315
5.5.2 Free Molecule Regime 316
5.5.3 Transition Regime 316
5.6 The Size Distribution Function 321
5.6.1 Distributions Based on \(\log D_p \) 322
5.6.2 Relating Size Distributions Based on Different Independent Variables 323
5.7 The Log-Normal Distribution 325
5.8 General Dynamic Equation for Aerosols 328
5.8.1 Discrete General Dynamic Equation 328
5.8.2 Continuous General Dynamic Equation 329
5.9 Coagulation Coefficient 331
5.9.1 Brownian Coagulation 332
5.9.2 Effect of van der Waals and Viscous Forces on Brownian Coagulation 333
5.10 Homogeneous Nucleation 340
5.11 Sectional Representation of Aerosol Processes 347
Problems 349
References 356

Chapter 6 PARTICLE FORMATION IN COMBUSTION 358

6.1 Ash 358
6.1.1 Ash Formation from Coal 359
6.1.2 Residual Ash Size Distribution 362
6.1.3 Ash Vaporization 364
6.1.4 Dynamics of the Submicron Ash Aerosol 370
6.2 Char and Coke 372
6.3 Soot 373
6.3.1 Soot Formation 375
6.3.2 Soot Oxidation 379
6.3.3 Control of Soot Formation 381
6.4 Motor Vehicle Exhaust Aerosols 385
Chapter 7 REMOVAL OF PARTICLES FROM GAS STREAMS 391

7.1 Collection Efficiency 393
7.2 Settling Chambers 394
 7.2.1 Laminar Flow Settling Chamber 396
 7.2.2 Plug Flow Settling Chamber 398
 7.2.3 Turbulent Flow Settling Chamber 399
7.3 Cyclone Separators 402
 7.3.1 Laminar Flow Cyclone Separators 404
 7.3.2 Turbulent Flow Cyclone Separators 406
 7.3.3 Cyclone Dimensions 408
 7.3.4 Practical Equation for Cyclone Efficiency 408
7.4 Electrostatic Precipitation 411
 7.4.1 Overall Design Equation for the Electrostatic Precipitator 413
 7.4.2 Generation of the Corona 415
 7.4.3 Particle Charging 417
 7.4.4 Field Charging 418
 7.4.5 Diffusion Charging 420
 7.4.6 The Electric Field 425
7.5 Filtration of Particles from Gas Streams 433
 7.5.1 Collection Efficiency of a Fibrous Filter Bed 433
 7.5.2 Mechanics of Collection by a Single Fiber 435
 7.5.3 Flow Field around a Cylinder 436
 7.5.4 Deposition of Particles on a Cylindrical Collector by Brownian Diffusion 438
 7.5.5 Deposition of Particles on a Cylindrical Collector by Interception 440
 7.5.6 Deposition of Particles on a Cylindrical Collector by Inertial Impaction and Interception 441
 7.5.7 Collection Efficiency of a Cylindrical Collector 449
 7.5.8 Industrial Fabric Filters 452
 7.5.9 Filtration of Particles by Granular Beds 455
7.6 Wet Collectors 456
 7.6.1 Spray Chamber 459
 7.6.2 Deposition of Particles on a Spherical Collector 463
 7.6.3 Venturi Scrubbers 467
Chapter 8 REMOVAL OF GASEOUS POLLUTANTS
FROM EFFLUENT STREAMS 479

8.1 Interfacial Mass Transfer 480
8.2 Absorption of Gases by Liquids 484
 8.2.1 Gas Absorption without Chemical Reaction 484
 8.2.2 Gas Absorption with Chemical Reaction 491
8.3 Adsorption of Gases on Solids 497
8.4 Removal of SO₂ from Effluent Streams 505
 8.4.1 Throwaway Processes: Lime and Limestone Scrubbing 506
 8.4.2 Regenerative Processes 511
8.5 Removal of NOₓ from Effluent Streams 512
 8.5.1 Shell Flue Gas Treating System 513
 8.5.2 Wet Simultaneous NOₓ/SO₂ Processes 513
 8.5.3 Selective Noncatalytic Reduction 514
 8.5.4 Selective Catalytic Reduction 515
 8.5.5 NOₓ and SO₂ Removal by Electron Beam 516

Problems 517
References 519

Chapter 9 OPTIMAL AIR POLLUTION CONTROL STRATEGIES 521

9.1 Long-Term Air Pollution Control 524
9.2 A Simple Example of Determining a Least-Cost Air Pollution Control Strategy 526
9.3 General Statement of the Least-Cost Air Pollution Control Problem 527
9.4 A Least-Cost Control Problem for Total Emissions 529

Problems 534
References 534

Index 537
Analysis and abatement of air pollution involve a variety of technical disciplines. Formation of the most prevalent pollutants occurs during the combustion process, a tightly coupled system involving fluid flow, mass and energy transport, and chemical kinetics. Its complexity is exemplified by the fact that, in many respects, the simplest hydrocarbon combustion, the methane-oxygen flame, has been quantitatively modeled only within the last several years. Nonetheless, the development of combustion modifications aimed at minimizing the formation of the unwanted by-products of burning fuels requires an understanding of the combustion process. Fuel may be available in solid, liquid, or gaseous form; it may be mixed with the air ahead of time or only within the combustion chamber; the chamber itself may vary from the piston and cylinder arrangement in an automobile engine to a 10-story-high boiler in the largest power plant; the unwanted by-products may remain as gases, or they may, upon cooling, form small particles.

The only effective way to control air pollution is to prevent the release of pollutants at the source. Where pollutants are generated in combustion, modifications to the combustion process itself, for example in the manner in which the fuel and air are mixed, can be quite effective in reducing their formation. Most situations, whether a combustion or an industrial process, however, require some degree of treatment of the exhaust gases before they are released to the atmosphere. Such treatment can involve intimately contacting the effluent gases with liquids or solids capable of selectively removing gaseous pollutants or, in the case of particulate pollutants, directing the effluent flow through a device in which the particles are captured on surfaces.

The study of the generation and control of air pollutants can be termed air pollution engineering and is the subject of this book. Our goal here is to present a rigorous and fundamental analysis of the production of air pollutants and their control. The book is
intended for use at the senior or first-year graduate level in chemical, civil, environmental, and mechanical engineering curricula. We assume that the student has had basic first courses in thermodynamics, fluid mechanics, and heat transfer. The material treated in the book can serve as the subject of either a full-year or a one-term course, depending on the choice of topics covered.

In the first chapter we introduce the concept of air pollution engineering and summarize those species classified as air pollutants. Chapter 1 also contains four appendices that present certain basic material that will be called upon later in the book. This material includes chemical kinetics, the basic equations of heat and mass transfer, and some elementary ideas from probability and turbulence.

Chapter 2 is a basic treatment of combustion, including its chemistry and the role of mixing processes and flame structure. Building on the foundation laid in Chapter 2, we present in Chapter 3 a comprehensive analysis of the formation of gaseous pollutants in combustion. Continuing in this vein, Chapter 4 contains a thorough treatment of the internal combustion engine, including its principles of operation and the mechanisms of formation of pollutants therein. Control methods based on combustion modification are discussed in both Chapters 3 and 4.

Particulate matter (aerosols) constitutes the second major category of air pollutants when classified on the basis of physical state. Chapter 5 is devoted to an introduction to aerosols and principles of aerosol behavior, including the mechanics of particles in flowing fluids, the migration of particles in external force fields, Brownian motion of small particles, size distributions, coagulation, and formation of new particles from the vapor by homogeneous nucleation. Chapter 6 then treats the formation of particles in combustion processes.

Chapters 7 and 8 present the basic theories of the removal of particulate and gaseous pollutants, respectively, from effluent streams. We cover all the major air pollution control operations, such as gravitational and centrifugal deposition, electrostatic precipitation, filtration, wet scrubbing, gas absorption and adsorption, and chemical reaction methods. Our goal in these two chapters, above all, is to carefully derive the basic equations governing the design of the control methods. Limited attention is given to actual equipment specification, although with the material in Chapters 7 and 8 serving as a basis, one will be able to proceed to design handbooks for such specifications.

Chapters 2 through 8 treat air pollution engineering from a process-by-process point of view. Chapter 9 views the air pollution control problem for an entire region or airshed. To comply with national ambient air quality standards that prescribe, on the basis of health effects, the maximum atmospheric concentration level to be attained in a region, it is necessary for the relevant governmental authority to specify the degree to which the emissions from each of the sources in the region must be controlled. Thus it is generally necessary to choose among many alternatives that may lead to the same total quantity of emission over the region. Chapter 9 establishes a framework by which an optimal air pollution control plan for an airshed may be determined. In short, we seek the least-cost combination of abatement measures that meets the necessary constraint that the total emissions not exceed those required to meet an ambient air quality standard.

Once pollutants are released into the atmosphere, they are acted on by a variety of
Preface

chemical and physical phenomena. The atmospheric chemistry and physics of air pollution is indeed a rich arena, encompassing the disciplines of chemistry, meteorology, fluid mechanics, and aerosol science. As noted above, the subject matter of the present book ends at the stack (or the tailpipe); those readers desiring a treatment of the atmospheric behavior of air pollutants are referred to J. H. Seinfeld, *Atmospheric Chemistry and Physics of Air Pollution* (Wiley-Interscience, New York, 1986).

We wish to gratefully acknowledge David Huang, Carol Jones, Sonya Kreidenweis, Ranajit Sahu, and Ken Wolfenbarger for their assistance with calculations in the book.

Finally, to Christina Conti, our secretary and copy editor, who, more than anyone else, kept safe the beauty and precision of language as an effective means of communication, we owe an enormous debt of gratitude. She nurtured this book as her own; through those times when the task seemed unending, she was always there to make the road a little smoother.

R. C. Flagan
J. H. Seinfeld