Predicting the Buckling Load of a Structural Tie Rod due to Axial Compression

Anthony DeLugan
04/03/2012

Master’s Project Spring 2012
• **Purpose of project**: provide a designer with a sound technical guideline to predict the critical buckling load of a structural tie rod

• There are certain cases where a tie rod must be compression critical

 • This means that it must be designed to buckle at a load shortly above the design load (compression safety margin near zero)

 • In an overload event this could prevent damage to adjacent components, which otherwise could pose a hazardous condition

• Buckling test results of an actual structural tie rod are available to help validate the results of the analysis.
 • *Average experimental bucking load = 7061 lbs*
Methodology Overview

• Buckling is a material and geometric nonlinear phenomenon; in this case it must be evaluated predominantly using nonlinear FEA techniques
 • Material nonlinearity – stress / strain curve does not behave linearly at applied loading
 • Geometric nonlinearity – a structure experiences large deformations under applied loading, causing a nonlinear force/displacement relation

• First, a linear buckling analysis is performed to understand the buckling mode shape

• Second, a nonlinear analysis is conducted in three phases:
 • Nonlinear static solution and forcing incremental load steps using Modified Newton’s method with bisection convergence enhancement
 • Nonlinear static solution using arc length method
 • Nonlinear static buckling solution with eigenvalue extraction
Modified Newton Method

- Modified Newton method evaluates out of balance loads (difference between restoring forces and applied loads)

- A linear solution is performed using out of balance tolerance loads. If convergence fails, out of balance load is re-evaluated and stiffness matrix is updated

- Process is repeated until solution converges.

- Bisection method reduces load step in half to help solution converge

The critical buckling load is estimated to be the applied load associated with the point after which the bisection method converges the solution after it is activated
Arc Length Method

- The Arc Length method takes the Modified Newton solution and forces convergence along an arc.

- Arc length method prevents divergence at bifurcation points where the slope of the load / deflection curve becomes zero or negative
 - Modified Newton method insufficient at handling this by itself

- The node with the maximum deflection is identified and the load / deflection curve of this point is tracked post buckling

The maximum load in the load / displacement curve of the tracked node is the estimated critical buckling load
Nonlinear Buckling with Eigenvalue Extraction

• Nonlinear buckling analysis starts with the governing equation for eigenvalue analysis

\[
([K_0] + \lambda_{CR} \cdot [K_\sigma]) \cdot \{\varphi\} = 0
\]

• Delta stiffness matrices and displacements are evaluated at the known points of instability
 • For this reason it is critical to run the nonlinear buckling solution using load increments that cease right before the expected buckling load
 • This is why it is best to perform the NL buckling analysis last

• Two subcases with incremental loads are needed to calculate the critical load based on equation to the right

\[
\{P_{CR}\} = \{P_n\} + \lambda \cdot \{\Delta P\}
\]

\[
\{\Delta P\} = \{P_n\} - \{P_{n-1}\}
\]

• The FEA output file provides the eigenvalues.

• The critical load is based on the equation using the eigenvalue from the second load case
Analysis / Results

<table>
<thead>
<tr>
<th>Analysis Method</th>
<th>Brief Analysis Summary</th>
<th>Critical Buckling Load</th>
<th>Error Margin</th>
</tr>
</thead>
</table>
| Modified Newton | • 1st subcase loads tie rod up to 6000 lbs in 5 increments
 • 2nd subcase loads tie rod from 6000 to 7000 lbs in 5 increments
 • Bisection method converged at .100 load step in second subcase | 6100 lbs | 13.6% |
| Arc Length | • 1st subcase loads tie rod to 6000 lbs in 5 increments with instigative preload to induce buckling shape
 • 2nd subcase employs arc length method | 6134 lbs | 13.1% |
| NL Buckling | • 1st subcase loads tie rod up to 5000 lbs in 5 increments
 • 2nd subcase loads tie rod from 5000 to 6000 lbs in 5 increments
 • 1st mode Eigenvalues for 1st & 2nd subcase resp. are .812 & .562 | 6112 lbs | 13.4% |
Conclusions

• All three NL analysis methods produce results with great precision

• Error margin of around 13% is considered accurate for a nonlinear buckling validation study based on existing literature in the field

• It is recommended that a designer incorporate all three NL analysis techniques if possible, in order to substantiate results

• Results with Arc Length method are considered least conservative, although only vary by a few tenths of a percentage point.
 • May be a good choice for analysis that minimizes compression margin of safety