Reliability Block Diagram

Combinatorial Models
RBD for Series Systems
RBD for Parallel Systems
Non-State-Space Modeling Techniques TAXONOMY

- Non-State-Space method
 - Performance models
 - Queuing models
 - Dependability models
 - Fault Tree models
 - Reliability Block Diagram models
 - Reliability Graphs
Combinatorial Models

- Use **probabilistic techniques** to enumerate the different ways in which a system can remain operational.
- The reliability of a system is **derived** in terms of the reliabilities of the **individual components** of the system (thus the term combinatorial).
- Examples: one-component system, two-component system, …
Complexity Concerns

For a system consisting of \(n \) components

Every component can be in one of the two conditions: working or failed

How many possible combinations of the status of these \(n \) components?

How do you calculate the reliability of the system given the probability of each component being working (or failed)?
What can be done dealing with the complexity?

During model construction:
- Need a more intelligent way to describe the system’s failure behavior
- Series and parallel structures

During model solution:
- Need more efficient ways of calculations, rather than counting individual probabilities
“Structured” Combinatorial models

- **Reliability block diagrams**, Fault trees and Reliability graphs
 - Integrate certain probability events into a module
 - Organize the modules in a “structured” way, according to the effects of each module’s failure
 - Commonly used in reliability, availability, or safety assessment
 - These model types are similar in that they capture conditions that make a system fail in terms of the structural relationships between the system components.
Features

- Combinatorial modeling techniques like RBDs and FTs are easy to use
- Assuming **statistical independence**
 - Failures independence
 - Repairs independence
- Each component can have attached to it
 - A probability of failure
 - A failure rate
 - A distribution of time to failure
 - Steady-state and instantaneous unavailability
Features continue

- Easy specification,
- Fast computation
 - Relatively good algorithms are available for solving such models so that 100 component systems can be handled computationally (consider the case where you need to handle 2^{100} probability events)
Series Systems

- A system that contains no redundancy
- Each component of the system is needed to make the system function correctly
- If any one of the components fails, the system fails
- Example:
RDB Example: Series System

System Block Diagram
RDB example: Series System

- Reliability Block Diagram

Monitor ➔ Processor ➔ Keyboard
RDB Example: Reliability Calculation for Series RBD

- Let λ_1 be the failure rate for Monitor
- Assume exponential distribution for the failures
- $R_{\text{monitor}}(t) = e^{-\lambda_1 \cdot t}$
- Similarly, $R_{\text{processor}}(t) = e^{-\lambda_2 \cdot t}$ and $R_{\text{keyboard}}(t) = e^{-\lambda_3 \cdot t}$
- $R_{\text{system}}(t) = R_{\text{monitor}}(t) \cdot R_{\text{processor}}(t) \cdot R_{\text{keyboard}}(t)$
- When exponential failure distribution is assumed, the failure rate of a series system is the sum of individual components’ failure rates
RDB Example: Availability Calculation

- Let λ_1 be the failure rate for Monitor, and μ_1 be the repair rate for the Monitor.
- Exponential distributions are assumed.
- $A_{SS-Monitor} =$
- $A_{SS-processor} =$
- $A_{SS-keyboard} =$
- $A_{SS-system} =$
Something you must keep in mind when applying RBD

- Failure/Repair Dependencies are often present
- RBDs, Fault Trees cannot easily handle the dependency such as
 - Event-dependent failure
 - Shared repair
Hierarchical Composition Method

Given a detailed description of a system, too many components are displayed, which makes the modeling task difficult which creates unnecessary complexity.

Abstract the detailed description into a higher level description – hierarchical composition method.
Homework Exercise: A simple Aircraft Control System

- Use the system block diagram given in the handout, construct the corresponding RBD
- Abstract the system block diagram into a higher level block diagram
- From the higher level system block diagram, construct the corresponding RBD
- Each block in the higher level RBD has its own RBD underneath
Failure rates

- $\lambda_{\text{sensor}} = 1 \times 10^{-6}$ failures per hour
- $\lambda_{\text{actuator}} = 1 \times 10^{-5}$ failures per hour
- $\lambda_{\text{computer}} = 4 \times 10^{-4}$ failures per hour
- $\lambda_{\text{bus}} = 1 \times 10^{-6}$ failures per hour
Homework (due next Tue.)

- Plot the system reliability as a function of
 (1) The failure rate of “Computer”
 (2) The failure rate of “Actuator”
 (3) The failure rate of “Bus”
 (4) The failure rate of “Sensor”
Parallel Systems

- **Basic** parallel system: only one of the N identical components is required for the system to function

- Example:
RDB Example: Basic Parallel System

System Block Diagram
RDB example: Parallel System

Reliability Block Diagram

- Keyboard
- Processor
- Monitor
- Keyboard
- Processor
- Monitor
RDB using Hierarchical Composition/Decomposition

On the higher level (overall system level)

On the “Computer” level
Reliability Calculation for Basic Parallel RBD

- The “Unreliability” of the parallel system can be computed as the probability that all N components fail.

- Assume all N components are having the same failure rate λ, and the probability that a component is failed at time t is $P_{\text{fail}}(t)$.

- \[1 - R_{\text{parallel}}(t) = \prod_{i=1}^{N} P_{\text{fail}}(t) \]

- If exponential distribution is used for $P_{\text{fail}}(t)$, what would be the equation for $R_{\text{parallel}}(t)$?
Independence Assumption

- Where in the above equation that the independence assumption is made?
- Just to remind you…

- **Failure/Repair Dependencies are often present**
- **RBD cannot easily handle the dependency such as**
 - Event-dependent failure
 - Shared repair (when availability is considered)
Availability Calculation

- Let λ_1 be the failure rate for Monitor, and μ_1 be the repair rate for the Monitor.
- Exponential distributions are assumed.
- $A_{SS-Monitor} =$
- $A_{SS-processor} =$
- $A_{SS-keyboard} =$
- $A_{SS-1of2-parallel-system} =$
Comparison

- $\lambda_{\text{monitor}} = 1 \times 10^{-4}$ failures per hour
- $\lambda_{\text{processor}} = 1 \times 10^{-5}$ failures per hour
- $\lambda_{\text{keyboard}} = 4 \times 10^{-4}$ failures per hour
- $\mu = 2$ repair per hour for all components
- For series system, A_{SS} is

- For parallel system (with 1:2 redundancy), A_{SS} is
Parallel/Series System

Processor 1 Keyboard 1 Monitor 1
 | | |
 Bus 1 Bus 2 Bus 2

Processor 2 Keyboard 2 Monitor 2

What is the corresponding RBD?
Corresponding RBD

Assuming Buses are perfect

Monitor

Processor

Keyboard

Monitor

Processor

Keyboard

Monitor

Processor

Keyboard

Compare to the RBD shown before, what is the difference?
Numerical Comparison (1)

<table>
<thead>
<tr>
<th>Component</th>
<th>P_w</th>
<th>P_f</th>
<th>P_w (1 of 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor</td>
<td>0.99</td>
<td>0.01</td>
<td>0.9999</td>
</tr>
<tr>
<td>Keyboard</td>
<td>0.9</td>
<td>0.1</td>
<td>0.99</td>
</tr>
<tr>
<td>Processor</td>
<td>0.999</td>
<td>0.001</td>
<td>0.999999</td>
</tr>
</tbody>
</table>

$P_{system-w} = 0.98990001$
Numerical Comparison (2)

<table>
<thead>
<tr>
<th>Component</th>
<th>P_w</th>
<th>P_f</th>
<th>$P_{w\text{-single}}$</th>
<th>$P_{\text{system-w}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor</td>
<td>0.99</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keyboard</td>
<td>0.9</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor</td>
<td>0.999</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$P_{w\text{-single}} = 0.890109$
$P_{\text{system-w}} = 0.987923968$
Non-Identical Parallel Systems

What if the two components (for processor, or for monitor, or keyboard) have different failure rates? How are you going to calculate the reliability?
N Modular Redundancy

- M of N System
 - M of the total of N identical modules are required to function
 - TMR is one example, where M is 2 and N is 3
RBD for TMR

Module 1

Module 2

Module 3

Voter

2:3
Reliability Calculation for TMR

Cases for the TMR to be working:
• all of the 3 modules are working
• any 2 modules are working, and 1 module is failed

Look at it from another way:
Cases for the TMR to be failed
• all 3 modules are failed
• any one module is working, however, the rest 2 are not working

Remember, the voter is a Single-Point-Of-Failure

<table>
<thead>
<tr>
<th>Module</th>
<th>voter</th>
<th>TMR</th>
<th>System Pw</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.999</td>
<td>0.999</td>
<td>0.999997</td>
<td>0.998997005</td>
</tr>
</tbody>
</table>

2 : 3
Reliability of the TMR system as a function of Rel of the Module & Rel of the Voter

- changing Rel of Voter
- changing Rel of Module

Rel (TMR System)

Rel of individual component (voter or module)
WAAS System Block Diagram

http://gps.faa.gov/Programs/index.htm
Construct the RBD for the WAAS System Block Diagram

- Use Excel
- Use Sharpe to implement your model